Coordinatore | THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | United Kingdom [UK] |
Totale costo | 1˙565˙873 € |
EC contributo | 1˙565˙873 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2009-AdG |
Funding Scheme | ERC-AG |
Anno di inizio | 2010 |
Periodo (anno-mese-giorno) | 2010-05-01 - 2016-04-30 |
# | ||||
---|---|---|---|---|
1 |
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Organization address
address: The Old Schools, Trinity Lane contact info |
UK (CAMBRIDGE) | hostInstitution | 1˙565˙873.00 |
2 |
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Organization address
address: The Old Schools, Trinity Lane contact info |
UK (CAMBRIDGE) | hostInstitution | 1˙565˙873.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Oxide thin film heterostructures hold the key to a wide range of novel, and energy efficient devices of many different sorts. In the last few years, there has been a plethora of very exciting reports in the top journals on the basic science of single layer oxide films or heterostructure devices. However, the holy grail of applications is still just an event on the horizon. An innovative and emerging materials science led approach is now required to understand the factors at play limiting these highly promising materials, thus opening the door to realising their functional potential. As time progresses the interfaces are playing an ever stronger role in the functionality and multifunctionality. New kinds of interfaces, new ways to control them, and state-of-the art probing of them are all needed to understand how to control and tune them. This proposal strikes at the heart of all these issues and aims to realise the true power of oxide electronics.'