Coordinatore | THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | United Kingdom [UK] |
Totale costo | 1˙918˙270 € |
EC contributo | 1˙918˙270 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2009-AdG |
Funding Scheme | ERC-AG |
Anno di inizio | 2010 |
Periodo (anno-mese-giorno) | 2010-04-01 - 2015-03-31 |
# | ||||
---|---|---|---|---|
1 |
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Organization address
address: The Old Schools, Trinity Lane contact info |
UK (CAMBRIDGE) | hostInstitution | 1˙918˙270.00 |
2 |
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Organization address
address: The Old Schools, Trinity Lane contact info |
UK (CAMBRIDGE) | hostInstitution | 1˙918˙270.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Two new research programs will be established at Cambridge University: 1. Lithium ion batteries (LIBs). New positive and negative electrode materials are required for a range of LIB applications, which are lighter, have higher capacities, and can be operated at higher rates. To this end, I will establish a joint synthesis and characterization program, aimed at understanding how LIB-materials function and sometimes fail, in order to provide the fundamental insight required to design the next generation of LIBs. In particular we will use NMR spectroscopy, with other relevant characterization tools, including pair distribution function analysis, to investigate structure and Li dynamics. The specific objectives are (i) to develop novel in situ NMR techniques to investigate LIBs under realistic operating conditions, including the very high rates required for batteries for transportation. (ii) Utilize these methodologies to investigate a wide range of electrode systems, including conversion reactions, doped phosphates and composite electrodes. 2. Electrolytes for Solid Oxide Fuel Cells. This smaller program will investigate both oxygen and proton transport in ceramic materials, focusing on doped perovskites. Identification of the differences between the local structures of the ions that contribute to the ionic conductivity, and those that remain trapped in the lattice, represents a challenge for many experimental structural probes. Our objectives are to use NMR techniques to determine local structure and motion, in order to identify (i) how doping controls structure and (ii) the conduction mechanisms responsible for ionic conductivity. For the proton conductors, we will determine mechanisms for proton incorporation and investigate proton mobility in the bulk/grain boundaries.'
Nationwide prospective study on community-acquired bacterial meningitis: from genetics to therapy
Read MoreOptimizing Policies for Transport: accounting for Industrial Organisation in Network markets
Read MoreStimulated Raman analysis and Raman microscopy with Fourier Domain Mode Locked (FDML) laser sources
Read More