Coordinatore | STIFTELSEN SINTEF
Organization address
address: Strindveien 4 contact info |
Nazionalità Coordinatore | Norway [NO] |
Totale costo | 3˙068˙183 € |
EC contributo | 1˙256˙286 € |
Programma | FP7-JTI
Specific Programme "Cooperation": Joint Technology Initiatives |
Code Call | FCH-JU-2008-1 |
Funding Scheme | JTI-CP-FCH |
Anno di inizio | 2010 |
Periodo (anno-mese-giorno) | 2010-01-01 - 2012-12-31 |
# | ||||
---|---|---|---|---|
1 |
STIFTELSEN SINTEF
Organization address
address: Strindveien 4 contact info |
NO (TRONDHEIM) | coordinator | 317˙113.00 |
2 |
FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V
Organization address
address: Hansastrasse 27C contact info |
DE (MUENCHEN) | participant | 252˙689.00 |
3 |
AREVA STOCKAGE D'ENERGIE SAS
Organization address
city: AIX-EN-PROVENCE contact info |
FR (AIX-EN-PROVENCE) | participant | 181˙736.00 |
4 |
COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Organization address
address: RUE LEBLANC 25 contact info |
FR (PARIS 15) | participant | 177˙008.00 |
5 |
FUMA-TECH GESELLSCHAFT FUER FUNKTIONELLE MEMBRANEN UND ANLAGENTECHNOLOGIE MBH
Organization address
address: AM GRUBENSTOLLEN 11 contact info |
DE (ST INGBERT) | participant | 140˙235.00 |
6 |
STATOIL ASA
Organization address
address: Forusbeen 50 contact info |
NO (STAVANGER) | participant | 128˙339.00 |
7 |
THE UNIVERSITY OF READING
Organization address
address: WHITEKNIGHTS CAMPUS WHITEKNIGHTS HOUSE contact info |
UK (READING) | participant | 59˙166.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'The main objective of the NEXPEL project, a successful demonstration of an efficient PEM electrolyser integrated with Renewable Energy Sources, supports the overall vision to establish hydrogen as an energy carrier in a large range of applications in the near future. The very ambitious objectives in the call will be addressed by a top class European consortium which is carefully balanced between leading R&D organisations and major industrial actors from 4 member states. An iterative approach between system, sub systems and components will be applied to define its cost, performance and ecological targets. This will be accompanied by a design to cost exercise as part of the life cycle analysis. Efficiency greater than 75% will be achieved by - developing more effective electrodes - adapting highly conductive new membrane materials - increasing the operating temperature for increased kinetics - lowering the hydrogen cross over using denser membranes - increasing the system pressure to reduce pump losses A stack life time towards 40 000 h will be achieved by - reducing hydrogen cross over reducing chemical degradation by peroxides - developing more stable catalysts, porous current collectors and bipolar plates - designing stack which minimizes temperature and mechanical stress gradients - developing high efficient advanced power electronic minimising load stress for the electrolyser Reducing system costs to EURO 5,000/Nm3 is a major driving force and will be addressed by - replacing/reducing of expensive materials (PFSA membrane, Pt loading, titanium) - increasing the performance of components and sub-systems - simplifying the system - developing components suitable for mass production The consortium is confident that the dissemination and exploitation of the project will create considerable impact especially in terms of Europe’s energy security, reducing greenhouse gas emission and increasing Europe’s competitiveness.'