Coordinatore | CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | France [FR] |
Totale costo | 2˙492˙561 € |
EC contributo | 2˙492˙561 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2009-AdG |
Funding Scheme | ERC-AG |
Anno di inizio | 2010 |
Periodo (anno-mese-giorno) | 2010-05-01 - 2015-04-30 |
# | ||||
---|---|---|---|---|
1 |
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
Organization address
address: Rue Michel -Ange 3 contact info |
FR (PARIS) | hostInstitution | 2˙492˙561.00 |
2 |
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
Organization address
address: Rue Michel -Ange 3 contact info |
FR (PARIS) | hostInstitution | 2˙492˙561.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'We propose to investigate a new frontier in Physics: the study of Magnetic systems using attosecond laser pulses. The main disciplines concerned are: Ultrafast laser sciences, Magnetism and Spin-Photonics, Relativistic Quantum Electrodynamics. Three issues of modern magnetism are addressed. 1. How fast can one modify and control the magnetization of a magnetic system ? 2. What is the role and essence of the coherent interaction between light and spins ? 3. How far spin-photonics can bring us to the real world of data acquisition and storage ? - We want first to provide solid ground experiments, unravelling the mechanisms involved in the demagnetization induced by laser pulses in a variety of magnetic materials (ferromagnetic nanostructures, aggregates and molecular magnets). We will explore the ultrafast magnetization dynamics of magnets using an attosecond laser source. - Second we want to explore how the photon field interacts with the spins. We will investigate the dynamical regime when the potential of the atoms is dressed by the Coulomb potential induced by the laser field. A strong support from the relativistic Quantum Electro-Dynamics is necessary towards that goal. - Third, even though our general approach is fundamental, we want to provide a benchmark of what is realistically possible in ultrafast spin-photonics, breaking the conventional thought that spin photonics is hard to implement at the application level. We will realize ultimate devices combining magneto-optical microscopy with the conventional magnetic recording. This new field will raise the interest of a number of competitive laboratories at the international level. Due to the overlapping disciplines the project also carries a large amount of educational impact both fundamental and applied.'