CZOSQP

"Noncommutative Calderón-Zygmund theory, operator space geometry and quantum probability"

 Coordinatore AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Spain [ES]
 Totale costo 1˙090˙925 €
 EC contributo 1˙090˙925 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2010-StG_20091028
 Funding Scheme ERC-SG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-10-01   -   2015-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS

 Organization address address: CALLE SERRANO 117
city: MADRID
postcode: 28006

contact info
Titolo: Dr.
Nome: Javier
Cognome: Parcet Hernandez
Email: send email
Telefono: +34 699702872
Fax: +34 914974889

ES (MADRID) hostInstitution 1˙090˙925.00
2    AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS

 Organization address address: CALLE SERRANO 117
city: MADRID
postcode: 28006

contact info
Titolo: Ms.
Nome: Ana Maria
Cognome: De La Fuente
Email: send email
Telefono: +34 91 5681709
Fax: +34 91 5681709

ES (MADRID) hostInstitution 1˙090˙925.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

quantum    neumann    algebras    noncommutative    theory    von    fourier    probability    operator   

 Obiettivo del progetto (Objective)

'Von Neumann's concept of quantization goes back to the foundations of quantum mechanics and provides a noncommutative model of integration. Over the years, von Neumann algebras have shown a profound structure and set the right framework for quantizing portions of algebra, analysis, geometry and probability. A fundamental part of my research is devoted to develop a very much expected Calderón-Zygmund theory for von Neumann algebras. The lack of natural metrics partly justifies this long standing gap in the theory. Key new ingredients come from recent results on noncommutative martingale inequalities, operator space theory and quantum probability. This is an ambitious research project and applications include new estimates for noncommutative Riesz transforms, Fourier and Schur multipliers on arbitrary discrete groups or noncommutative ergodic theorems. Other related objectives of this project include Rubio de Francia's conjecture on the almost everywhere convergence of Fourier series for matrix valued functions or a formulation of Fefferman-Stein's maximal inequality for noncommutative martingales. Reciprocally, I will also apply new techniques from quantum probability in noncommutative Lp embedding theory and the local theory of operator spaces. I have already obtained major results in this field, which might be useful towards a noncommutative form of weighted harmonic analysis and new challenging results on quantum information theory.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

ALOGLADIS (2011)

"From Anderson localization to Bose, Fermi and spin glasses in disordered ultracold gases"

Read More  

ULTRADYNE (2010)

Ultrafast dynamics of hydrogen bonded structures in condensed matter

Read More  

STRUCTDYN (2012)

‘Filming’ excited state structural dynamics in photosynthesis and organic semiconductors

Read More