FLAT SURFACES

"SL(2,R)-action on flat surfaces and geometry of extremal subvarieties of moduli spaces"

 Coordinatore JOHANN WOLFGANG GOETHE UNIVERSITAET FRANKFURT AM MAIN 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 1˙005˙600 €
 EC contributo 1˙005˙600 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2010-StG_20091028
 Funding Scheme ERC-SG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-10-01   -   2015-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    JOHANN WOLFGANG GOETHE UNIVERSITAET FRANKFURT AM MAIN

 Organization address address: GRUNEBURGPLATZ 1
city: FRANKFURT AM MAIN
postcode: 60323

contact info
Titolo: Ms.
Nome: Kristina
Cognome: Wege
Email: send email
Telefono: +49 69 798 15198
Fax: +49 69 798 15007

DE (FRANKFURT AM MAIN) hostInstitution 1˙005˙600.00
2    JOHANN WOLFGANG GOETHE UNIVERSITAET FRANKFURT AM MAIN

 Organization address address: GRUNEBURGPLATZ 1
city: FRANKFURT AM MAIN
postcode: 60323

contact info
Titolo: Prof.
Nome: Martin
Cognome: Moeller
Email: send email
Telefono: +49 69 798 28945
Fax: +49 69 798 22302

DE (FRANKFURT AM MAIN) hostInstitution 1˙005˙600.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

studying    curves    carries    sl    algebraic    feasible    spaces    billiard    teichmueller    varities    compactification    mumford    hilbert    polygonal    action    ing    actions    setting    unfolding    plus    questions    homogeneous    group    totally    table    characterization    space    called    years    surfaces    orbits    flat    tables    applicant    geodesic    comprehension    classifcation    interesting    modular    moduli    surface    reappear    coming    give   

 Obiettivo del progetto (Objective)

'Dynamics on polygonal billiard tables is best understood by unfolding the table and studying the resulting flat surface. The moduli space of flat surfaces carries a natural action of SL(2,R) and all the questions about Lie group actions on homogeneous spaces reappear in this non-homogeneous setting in an even more interesting way. Closed SL(2,R)-orbits give rise to totally geodesic subvarieties of the moduli space of curves, called Teichmueller curves. Their classifcation is a major goal over the coming years. The applicant's algebraic characterization of Teichmueller curves plus the comprehension of the Deligne-Mumford compactification of Hilbert modular varities make this goal feasible. on polygonal billiard tables is best understood unfolding the table and studying the resulting surface. The moduli space of flat surfaces carries action of SL(2,R) and all the questions about group actions on homogeneous spaces reappear in this homogeneous setting in an even more interesting way. SL(2,R)-orbits give rise to totally geodesic of the moduli space of curves, called curves. Their classifcation is a major goal the coming years. The applicant's algebraic characterization Teichmueller curves plus the comprehension of the Mumford compactification of Hilbert modular varities this goal feasible.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

ORACEAF (2012)

The origins of the Acheulean in East Africa

Read More  

ARYLATOR (2014)

New Catalytic Reactions and Exchange Pathways: Delivering Versatile and Reliable Arylation

Read More  

SLRA (2011)

"Structured low-rank approximation: Theory, algorithms, and applications"

Read More