FLAT SURFACES

"SL(2,R)-action on flat surfaces and geometry of extremal subvarieties of moduli spaces"

 Coordinatore JOHANN WOLFGANG GOETHE UNIVERSITAET FRANKFURT AM MAIN 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 1˙005˙600 €
 EC contributo 1˙005˙600 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2010-StG_20091028
 Funding Scheme ERC-SG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-10-01   -   2015-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    JOHANN WOLFGANG GOETHE UNIVERSITAET FRANKFURT AM MAIN

 Organization address address: GRUNEBURGPLATZ 1
city: FRANKFURT AM MAIN
postcode: 60323

contact info
Titolo: Ms.
Nome: Kristina
Cognome: Wege
Email: send email
Telefono: +49 69 798 15198
Fax: +49 69 798 15007

DE (FRANKFURT AM MAIN) hostInstitution 1˙005˙600.00
2    JOHANN WOLFGANG GOETHE UNIVERSITAET FRANKFURT AM MAIN

 Organization address address: GRUNEBURGPLATZ 1
city: FRANKFURT AM MAIN
postcode: 60323

contact info
Titolo: Prof.
Nome: Martin
Cognome: Moeller
Email: send email
Telefono: +49 69 798 28945
Fax: +49 69 798 22302

DE (FRANKFURT AM MAIN) hostInstitution 1˙005˙600.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

applicant    ing    surface    studying    setting    billiard    plus    hilbert    compactification    homogeneous    tables    flat    space    sl    called    curves    unfolding    comprehension    table    classifcation    carries    years    surfaces    moduli    teichmueller    algebraic    questions    geodesic    orbits    characterization    feasible    interesting    spaces    give    polygonal    varities    reappear    coming    totally    group    actions    mumford    action    modular   

 Obiettivo del progetto (Objective)

'Dynamics on polygonal billiard tables is best understood by unfolding the table and studying the resulting flat surface. The moduli space of flat surfaces carries a natural action of SL(2,R) and all the questions about Lie group actions on homogeneous spaces reappear in this non-homogeneous setting in an even more interesting way. Closed SL(2,R)-orbits give rise to totally geodesic subvarieties of the moduli space of curves, called Teichmueller curves. Their classifcation is a major goal over the coming years. The applicant's algebraic characterization of Teichmueller curves plus the comprehension of the Deligne-Mumford compactification of Hilbert modular varities make this goal feasible. on polygonal billiard tables is best understood unfolding the table and studying the resulting surface. The moduli space of flat surfaces carries action of SL(2,R) and all the questions about group actions on homogeneous spaces reappear in this homogeneous setting in an even more interesting way. SL(2,R)-orbits give rise to totally geodesic of the moduli space of curves, called curves. Their classifcation is a major goal the coming years. The applicant's algebraic characterization Teichmueller curves plus the comprehension of the Mumford compactification of Hilbert modular varities this goal feasible.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

STELLARAGES (2013)

Accurate ages of stars

Read More  

C3ENV (2011)

Combinatorial Computational Chemistry A new field to tackle environmental problems

Read More  

SURFACE SPIN (2013)

Surface Spin Resonance

Read More