Coordinatore | UNIVERSITAT DE VALENCIA
Organization address
address: AVENIDA BLASCO IBANEZ 13 contact info |
Nazionalità Coordinatore | Spain [ES] |
Totale costo | 153˙917 € |
EC contributo | 153˙917 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2009-IEF |
Funding Scheme | MC-IEF |
Anno di inizio | 2010 |
Periodo (anno-mese-giorno) | 2010-07-07 - 2012-07-06 |
# | ||||
---|---|---|---|---|
1 |
UNIVERSITAT DE VALENCIA
Organization address
address: AVENIDA BLASCO IBANEZ 13 contact info |
ES (VALENCIA) | coordinator | 153˙917.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Over the past few decades, Earth-observation systems for land applications focused on deriving the type and/or status of green vegetation. Despite the fact that several missions are already dedicated to global vegetation monitoring, the derived information is mostly related to the amount of vegetation and not to the actual photosynthetic activity. There is, however, one additional source of information about photosynthetic activity in the optical domain that has not yet been exploited by any satellite mission. This source of information is related to the emission of fluorescence from the chlorophyll of leaves assimilating carbon. Measuring fluorescence from space would provide a direct measurement of the dynamics and actual functioning of the photosynthetic machinery. Within ESA’s FLEX demonstration mission, the University of Valencia undertook the first steps to acquire fluorescence measurements at canopy level. We propose a working package (FluorBRDF) that enforces a more robust spatially-explicit retrieval of fluorescence. FluorBRDF aims to account for bidirectional reflectance distribution (BRDF) effects, which is not only a function of sun-sensor geometry but also of the anisotropic properties of vegetation cover. Assessing and correcting for BRDF effects as induced by variations in vegetation canopy heterogeneity may lead to a more reliable measures. Challenges related to BRDF effect affecting the fluorescence signal brings us to the following objectives: i) to gain insights in the BRDF effects of the canopy-level emitted fluorescence signal on a theoretical basis using radiative transfer models, ii) to develop a methodology to correct for it. And finally, iii) to achieve higher accuracies of airborne fluorescence measures of heterogeneous canopies. This work will contribute to improved photosynthetic efficiency quantifications at canopy or ecosystem level.'
Chilean Lake sediments as archives for climate variability during the past 1000 years
Read More"Advancing small-scale hydro-meteorological predictions through mobile X-band dual-polarization radar systems: methods, algorithms and applications"
Read MoreNeural basis of auditory processing in young congenitally deaf subjects with cochlear implants
Read More