DROSOPIRNAS

The piRNA pathway in the Drosophila germline a small RNA based genome immune system

 Coordinatore INSTITUT FUER MOLEKULARE BIOTECHNOLOGIE GMBH 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Austria [AT]
 Totale costo 1˙500˙000 €
 EC contributo 1˙500˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2010-StG_20091118
 Funding Scheme ERC-SG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-09-01   -   2015-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    INSTITUT FUER MOLEKULARE BIOTECHNOLOGIE GMBH

 Organization address address: Dr Bohrgasse 3
city: VIENNA
postcode: 1030

contact info
Titolo: Dr.
Nome: Julius
Cognome: Brennecke
Email: send email
Telefono: +43 1 790 44 4508

AT (VIENNA) hostInstitution 1˙500˙000.00
2    INSTITUT FUER MOLEKULARE BIOTECHNOLOGIE GMBH

 Organization address address: Dr Bohrgasse 3
city: VIENNA
postcode: 1030

contact info
Titolo: Ms.
Nome: Tanja
Cognome: Winkler
Email: send email
Telefono: +43 1 790 44 4410
Fax: +43 1 7987153

AT (VIENNA) hostInstitution 1˙500˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

biological    genome    germline    rna    biology    piwi    rnai    sequences    framework    molecular    heterochromatin    transposons    transposon    pathway    pirna    complementary    pirnas   

 Obiettivo del progetto (Objective)

'The discovery of RNA interference (RNAi) has revolutionized biology. As a technology it opened up new experimental and therapeutic avenues. As a biological phenomenon it changed our view on a diverse array of cellular processes. Among those are the control of gene expression, the suppression of viral replication, the formation of heterochromatin and the protection of the genome against selfish genetic elements such as transposons.

I propose to study the molecular mechanism and the biological impact of a recently discovered RNAi pathway, the Piwi interacting RNA pathway (piRNA pathway).

The piRNA pathway is an evolutionarily conserved small RNA pathway acting in the animal germline. It is the key genome surveillance system that suppresses the activity of transposons. Recent work has provided a conceptual framework for this pathway: According to this, the genome stores transposon sequences in heterochromatic loci called piRNA clusters. These provide the RNA substrates for the biogenesis of 23-29 nt long piRNAs. An amplification cycle steers piRNA production predominantly to those cluster regions that are complementary to transposons being active at a given time. Finally, piRNAs guide a protein complex centered on Piwi-proteins to complementary transposon RNAs in the cell, leading to their silencing.

In contrast to other RNAi pathways, the mechanistic framework of the piRNA pathway is largely unknown. Moreover, the spectrum of biological processes impacted by it is only poorly understood. piRNAs are for example not only derived from transposon sequences but also from various other genomic repeats that are enriched at telomeres and in heterochromatin.

We will systematically dissect the piRNA pathway regarding its molecular architecture as well as its biological functions in Drosophila. Our studies will be a combination of fly genetics, proteomics and genomics approaches. Throughout we aim at linking our results back to the underlying biology of germline development.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

CYFI (2012)

Cycle-Sculpted Strong Field Optics

Read More  

MAST-CELL-FUNCTIONS (2009)

Genetically defined and selectively mast cell-deficient mouse model to unravel the immunological roles of mast cells

Read More  

DRIWGHP (2014)

The Distribution and Redistribution of Income and Wealth: A Global and Historical Perspective

Read More