Coordinatore | LINKOPINGS UNIVERSITET
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Sweden [SE] |
Totale costo | 1˙484˙700 € |
EC contributo | 1˙484˙700 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2010-StG_20091028 |
Funding Scheme | ERC-SG |
Anno di inizio | 2010 |
Periodo (anno-mese-giorno) | 2010-09-01 - 2015-08-31 |
# | ||||
---|---|---|---|---|
1 |
LINKOPINGS UNIVERSITET
Organization address
address: CAMPUS VALLA contact info |
SE (LINKOPING) | hostInstitution | 1˙484˙700.00 |
2 |
LINKOPINGS UNIVERSITET
Organization address
address: CAMPUS VALLA contact info |
SE (LINKOPING) | hostInstitution | 1˙484˙700.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Nanoscale engineering is a fascinating research field spawning extraordinary materials which revolutionize microelectronics, medicine,energy production, etc. Still, there is a need for new materials and synthesis methods to offer unprecedented properties for use in future applications.
In this research project, I will conduct fundamental science investigations focused towards the development of novel materials with tailor-made properties, achieved by precise control of the materials structure and compostition. The objectives are to: 1) Perform novel synthesis of graphene. 2) Explore nanoscale engineering of 'graphene-based' materials, based on more than one atomic element. 3) Tailor uniquely combined metallic/ceramic/magnetic materials properties in so called MAX phases. 4) Provide proof of concept for thin film architectures in advanced applications that require specific mechanical, tribological, electronic, and magnetic properties.
This initative involves advanced materials design by a new and unique synthesis method based on cathodic arc. Research breakthroughs are envisioned: Functionalized graphene-based and fullerene-like compounds are expected to have a major impact on tribology and electronic applications. The MAX phases are expected to be a new candidate for applications within low friction contacts, electronics, as well as spintronics. In particular, single crystal devices are predicted through tuning of tunnel magnetoresistance (TMR) and anisotropic conductivity (from insulating to n-and p-type).
I can lead this innovative and interdisciplinary project, with a unique background combining relevant research areas: arc process development, plasma processing, materials synthesis and engineering, characterization, along with theory and modelling.'