Coordinatore | MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Germany [DE] |
Totale costo | 1˙270˙800 € |
EC contributo | 1˙270˙800 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2010-StG_20091118 |
Funding Scheme | ERC-SG |
Anno di inizio | 2010 |
Periodo (anno-mese-giorno) | 2010-10-01 - 2015-09-30 |
# | ||||
---|---|---|---|---|
1 |
MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.
Organization address
address: Hofgartenstrasse 8 contact info |
DE (MUENCHEN) | hostInstitution | 1˙270˙800.00 |
2 |
MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.
Organization address
address: Hofgartenstrasse 8 contact info |
DE (MUENCHEN) | hostInstitution | 1˙270˙800.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Animal nervous systems evolved in a marine environment at the dawn of animal life, and diversified during the Cambrian explosion', one of the most spectacular events in the history of life. Remarkably little is known about early stages of the evolution of neuronal circuits and nervous systems. Simple marine planktonic organisms, in particular ciliated larvae of various marine invertebrates, can give us insights into how simple nervous circuits of marine organism function and may have evolved. The proposed project aims at investigating the nervous system of ciliated animal larvae using an integrative approach combining the fields of molecular biology, neurobiology, behaviour, marine ecology and evolution. As such, the project aims at pioneering an entirely new field of interdisciplinary investigations, the neurobiology of marine zooplankton. We will use a cultured marine annelid as our main model species, and several 'satellite' species to give a comparative perspective to our investigations. Our objective is to understand the anatomy and function of neuronal circuits that regulate the planktonic migration of ciliated zooplankton larvae. We will be able to address this at various levels, linking molecules to neuron types, neurons to larval behaviours and behaviours to marine ecology. Our aim is to get the first detailed systems level understanding of the nervous system of a marine ciliated larva.'
"Designing new technical wastewater treatment solutions targeted for organic micropollutant biodegradation, by understanding enzymatic pathways and assessing detoxification"
Read More