Coordinatore | THE UNIVERSITY OF EDINBURGH
Organization address
address: OLD COLLEGE, SOUTH BRIDGE contact info |
Nazionalità Coordinatore | United Kingdom [UK] |
Totale costo | 181˙103 € |
EC contributo | 181˙103 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2009-IEF |
Funding Scheme | MC-IEF |
Anno di inizio | 2010 |
Periodo (anno-mese-giorno) | 2010-09-01 - 2012-08-31 |
# | ||||
---|---|---|---|---|
1 |
THE UNIVERSITY OF EDINBURGH
Organization address
address: OLD COLLEGE, SOUTH BRIDGE contact info |
UK (EDINBURGH) | coordinator | 181˙103.20 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Self-renewal of embryonic stem (ES) cells depends on the activity of a network of transcription factors at the centre of which lies the triumvirate of Nanog, Oct4 and Sox2 that bind together to a multitude of target genes to either activate or repress their expression. Nanog was initially isolated by the host laboratory on the basis that elevating its expression increased ES cell self-renewal efficiency. Surprisingly however, the host laboratory further demonstrated that ES cells continue to self-renew in the absence of Nanog, albeit with dramatically reduced efficiency. Moreover, Nanog is not expressed uniformly within the Oct4/Sox2-expressing undifferentiated population. Instead, ES cells fluctuate between a state in which Nanog protein levels are low or absent, associated with a poor self-renewal efficiency, and a state in which Nanog levels are high, associated with a high self-renewal efficiency. In order to shed light upon the means by which these fluctuations direct altered cellular functions, we propose a project with the specific aims of: (i) determining the gene expression profile in ES cells expressing distinct forms of Nanog, (ii) analysing the co-dependency of chromatin binding by Nanog, Oct4 and Sox2 at relevant target genes, and (iii) test the functional importance of the most relevant Nanog responsiveness genes.'
Spatio-Temporal Modeling for Enhanced Automated Detection and Classification of Non-Mass Lesions in Breast MRI
Read MoreUltra-high reslution pulse shaping: from communications to biophotonics applications
Read More"Application of innovative PTR-TOF mass spectrometry in plant biology, environmental science and food/food packaging"
Read More