CAMEGEST

Extremal Kaehler metrics and geometric stability

 Coordinatore UNIVERSITA DEGLI STUDI DI PARMA 

 Organization address address: VIA UNIVERSITA 12
city: PARMA
postcode: 43100

contact info
Titolo: Prof.
Nome: Claudio
Cognome: Arezzo
Email: send email
Telefono: +39 0521 906949
Fax: +39 0521 906950

 Nazionalità Coordinatore Italy [IT]
 Totale costo 228˙804 €
 EC contributo 228˙804 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2009-IOF
 Funding Scheme MC-IOF
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-09-15   -   2013-09-14

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITA DEGLI STUDI DI PARMA

 Organization address address: VIA UNIVERSITA 12
city: PARMA
postcode: 43100

contact info
Titolo: Prof.
Nome: Claudio
Cognome: Arezzo
Email: send email
Telefono: +39 0521 906949
Fax: +39 0521 906950

IT (PARMA) coordinator 228˙804.70

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

constant    extremal       problem    flow    prof    stability    arezzo    manifolds    existence    kaehler    scalar    polarized    metrics    nave    curvature    calabi    university    tian    generally    la   

 Obiettivo del progetto (Objective)

'The problem of finding canonical Kaehler metrics on compact manifolds is central in Kaehler geometry. Since the pioneering work of Calabi, the existence problem for Kaehler-Einstein (and more generally constant scalar curvature, or even extremal Kaehler) metrics has attracted considerable attention. In this circle of ideas the most fascinating problem is represented by the so-called Yau-Tian-Donaldson conjecture, which predict the equivalence between the K-polystability of a polarized manifold and the existence of a constant scalar curvature (or more generally extremal) Kaehler metric in the polarization class. In this vein we propose the following three main research objectives: first, find an algebraic criterion for K-stability of polarized manifolds; second, study the effect of symplectic reduction on relative K-stability; third study the Calabi flow (in particular on toric manifolds) adapting the La Nave-Tian and Arezzo-La Nave approach to the Kahhler-Ricci flow. We propose to develop the research at Princeton University, under the superfision of prof. G. Tian, and Parma University, under the supervision of prof. C. Arezzo.'

Altri progetti dello stesso programma (FP7-PEOPLE)

EGOVISION4HEALTH (2013)

Assessing Activities of Daily Living from a Wearable RGB-D Camera for In-Home Health Care Applications

Read More  

BIOAGE (2014)

The biomechanics of aging and its role in the protection of vehicle occupants

Read More  

SOLFORRENEW (2011)

A comprehensive framework for high-resolution assessment and short-term forecasting of the solar resource for renewable energy applications

Read More