Coordinatore | UNIVERSITA DEGLI STUDI DI PADOVA
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Italy [IT] |
Totale costo | 1˙499˙000 € |
EC contributo | 1˙499˙000 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2010-StG_20091028 |
Funding Scheme | ERC-SG |
Anno di inizio | 2010 |
Periodo (anno-mese-giorno) | 2010-12-01 - 2015-11-30 |
# | ||||
---|---|---|---|---|
1 |
ALMA MATER STUDIORUM-UNIVERSITA DI BOLOGNA
Organization address
address: Via Zamboni 33 contact info |
IT (BOLOGNA) | beneficiary | 300˙000.00 |
2 |
UNIVERSITA DEGLI STUDI DI PADOVA
Organization address
address: VIA 8 FEBBRAIO 2 contact info |
IT (PADOVA) | hostInstitution | 1˙199˙000.00 |
3 |
UNIVERSITA DEGLI STUDI DI PADOVA
Organization address
address: VIA 8 FEBBRAIO 2 contact info |
IT (PADOVA) | hostInstitution | 1˙199˙000.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'While chemical science is still striving in the search for such molecular machinery, real and perfectly working molecular machines have been developed millions of years ago by Nature. When biological systems are considered, one striking feature that emerges is their intrinsic functional simplicity, since only a few building blocks are used to build complex structures. Apparently, what matters is not chemical complexity but the ability to precisely control the spatial arrangement and organization. Functional nanoparticles offer an unmatched opportunity to build complex structures with simple building blocks and relatively simple manipulations. The main goal of the Mosaic project is to gain the ability to hierarchically control the self-assembling of metal nanoparticles coating monolayers and take advantage from such ability to obtain complex function from the materials realized. This objective will require reaching a complete understanding of the structure and dynamic of nanoparticles coating monolayers developing new tools, mainly based on NMR spectroscopy, for their investigation. Then, we plan to learn how to use supramolecular interactions to control the monolayer organization and to gain, in this way, the ability to program functional groups patterns on the surface of the particles. In this way, it will possible to achieve a degree of organization comparable to that of biologic systems, such as enzymes or membranes. This organization of functional groups will be then used to obtain highly sophisticated function by these nanosystems, such as recognition, sensing, in particular NIR sensing, catalysis and transport.'