CAMAP

CAMAP: Computer Aided Modeling for Astrophysical Plasmas

 Coordinatore UNIVERSITAT DE VALENCIA 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Spain [ES]
 Totale costo 1˙497˙000 €
 EC contributo 1˙497˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2010-StG_20091028
 Funding Scheme ERC-SG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-03-01   -   2017-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITAT DE VALENCIA

 Organization address address: AVENIDA BLASCO IBANEZ 13
city: VALENCIA
postcode: 46010

contact info
Titolo: Dr.
Nome: Miguel-ángel
Cognome: Aloy-Torás
Email: send email
Telefono: 34963543080
Fax: 34963543084

ES (VALENCIA) hostInstitution 1˙497˙000.00
2    UNIVERSITAT DE VALENCIA

 Organization address address: AVENIDA BLASCO IBANEZ 13
city: VALENCIA
postcode: 46010

contact info
Titolo: Ms.
Nome: ángeles
Cognome: Sanchis
Email: send email
Telefono: +34 96 3983621
Fax: +34 96 3937729

ES (VALENCIA) hostInstitution 1˙497˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

numerical    energy    collimation    magnetohydrodynamics    cores    magnetic    sources    astrophysical    relativistic    stellar    mhd    physics    virtual    simulations    jets   

 Obiettivo del progetto (Objective)

'This project will be aimed at obtaining a deeper insight into the physical processes taking place in astrophysical magnetized plasmas. To study these scenarios I will employ different numerical codes as virtual tools that enable me to experiment on computers (virtual labs) with distinct initial and boundary conditions. Among the kind of sources I am interested to consider, I outline the following: Gamma-Ray Bursts (GRBs), extragalactic jets from Active Galactic Nuclei (AGN), magnetars and collapsing stellar cores. A number of important questions are still open regarding the fundamental properties of these astrophysical sources (e.g., collimation, acceleration mechanism, composition, high-energy emission, gravitational wave signature). Additionally, there are analytical issues on the formalism in relativistic dynamics not resolved yet, e.g., the covariant extension of resistive magnetohydrodynamics (MHD). All these problems are so complex that only a computational approach is feasible. I plan to study them by means of relativistic and Newtonian MHD numerical simulations. A principal focus of the project will be to assess the relevance of magnetic fields in the generation, collimation and ulterior propagation of relativistic jets from the GRB progenitors and from AGNs. More generally, I will pursue the goal of understanding the process of amplification of seed magnetic fields until they become dynamically relevant, e.g., using semi-global and local simulations of representative boxes of collapsed stellar cores. A big emphasis will be put on including all the relevant microphysics (e.g. neutrino physics), non-ideal effects (particularly, reconnection physics) and energy transport due to neutrinos and photons to account for the relevant processes in the former systems. A milestone of this project will be to end up with a numerical tool that enables us to deal with General Relativistic Radiation Magnetohydrodynamics problems in Astrophysics.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

TICMP (2012)

Tolerance in Contemporary Muslim Practice: Political Theory Beyond the West

Read More  

DAMAGECONTROL (2012)

Tissue Damage Control Regulates The Pathogenesis of Immune Mediated Inflammatory Diseases

Read More  

ESEI (2010)

Engineering Social and Economic Institutions

Read More