MIMIC

Minerals Integrated into Multiple Identifications of Cancer (MIMIC): a multidisciplinary approach for the ultra-sensitive detection of cancer biomarkers

 Coordinatore IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE 

 Organization address address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ

contact info
Titolo: Mr.
Nome: Shaun
Cognome: Power
Email: send email
Telefono: +44 207 594 8773
Fax: +44 207 594 8609

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 212˙092 €
 EC contributo 212˙092 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2010-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-03-01   -   2013-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

 Organization address address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ

contact info
Titolo: Mr.
Nome: Shaun
Cognome: Power
Email: send email
Telefono: +44 207 594 8773
Fax: +44 207 594 8609

UK (LONDON) coordinator 212˙092.80

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

detected    electrode    multiple    scientific    atomic    cancer    device    enzyme    detection    biomimetic    electrodes    microscope    molecule    antibodies    fabricated    mass    biomarkers    crystals    force    single    chip    healthcare   

 Obiettivo del progetto (Objective)

'Although cancer is a merciless disease, many cancers can be cured if detected in an early stage. This piece of evidence has pushed the scientific community hard to develop new diagnostic tools for the early detection of cancer. MIMIC aims to be a breakthrough in cancer diagnostics by combining extreme sensitivity with design flexibility in a detection platform that can be easily mass-fabricated, therefore granting the easy commercialization of the device for its use in healthcare. In this approach, a microchip that contains multiple electrodes is fabricated with standard procedures in the microelectronics industry. Each electrode is selectively modified with capture probes for different cancer biomarkers by trapping antibodies in a collagen matrix that is generated in situ on each sensor. This biomimetic gelation process, triggered by the application of an electric field with an atomic force microscope, allows one to obtain a complex device starting from a disposable, mass-produced chip. After recognition of the biomarkers with secondary antibodies labeled with alkaline phosphatase, the enzyme generates calcium phosphate crystals as observed in biomineralization processes. Subsequently, the presence of the crystals on the electrodes is detected as the signal of the bioassay by measuring the capacitance of the solution between the electrodes on the chip and the tip of an atomic force microscope as the counter electrode. By using the crystals fabricated by the enzyme as seeds to promote biomimetic crystal growth, multiple biomarkers could be detected at the single-molecule level. The project seeks several scientific milestones, such as the fabrication of the first marketable device that can detect several proteins at the single-molecule level and the integration of atomic force microscopy for protein concentration and reading the chip, which will surely boost the competitiveness of the European Union in the economically relevant fields of healthcare and nanotechnology'

Altri progetti dello stesso programma (FP7-PEOPLE)

GLOCOM (2011)

Global contaminated land management

Read More  

DIRECTELECTIONSCHINA (2015)

Direct Township Elections in China: Political dynamics and governance outcomes

Read More  

ECOECO MONITORING (2008)

Optimal monitoring of socio-economic and ecological systems for robust natural resource management

Read More