Coordinatore | THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Organization address
address: The Old Schools, Trinity Lane contact info |
Nazionalità Coordinatore | United Kingdom [UK] |
Totale costo | 200˙549 € |
EC contributo | 200˙549 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2010-IEF |
Funding Scheme | MC-IEF |
Anno di inizio | 2011 |
Periodo (anno-mese-giorno) | 2011-03-01 - 2013-02-28 |
# | ||||
---|---|---|---|---|
1 |
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Organization address
address: The Old Schools, Trinity Lane contact info |
UK (CAMBRIDGE) | coordinator | 200˙549.60 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'The dynamic three dimensional structure of enzymes is dictated by secondary bonding interactions and plays a crucial role in both molecular recognition and allosteric regulation. “Smart” supramolecular polymers, similarly to natural enzymes, are also capable of undergoing self-organization into a defined structure on account of non-covalent interactions and subsequently exerting a function. A major limitation in the field of supramolecular self-assembly, however, has been access to synthetic systems showing reversible aggregation in water. The goal of this project is to prepare supramolecular polymers which demonstrate hierarchical assembly and light-triggered actuation in aqueous media. The self-assembly motif that will be exploited in the proposed materials is based on cucurbit[8]uril (CB[8]), a macrocyclic host molecule capable of simultaneously accommodating two guest molecules, including guests that display a photo-triggered binding affinity such as azobenzene or stilbene derivatives. Photochromic guests for CB[8] will be synthesized and combined with a variety of polymeric architectures; and CB[8] will be utilized as a molecular “handcuff” to hold together polymeric chains. This concept will be exploited in the light-controlled supramolecular polymerization of macromonomers and the preparation of polymeric micelles showing tuneable coordination modes. The light-induced modification of the stability, permeability or even morphology of the micelles will be explored. This project addresses major challenges in polymer science such as understanding the factors that determine the binding dynamics of supramolecular polymers in water and exerting reversible photo-control over macromolecular aggregation with impact on substance delivery applications, viscosity modification and the design of self-healable materials. This is a multidisciplinary project that will deliver a highly valuable educational training for the candidate in a cutting-edge scientific environment.'