HCVPACK

DEVELOPMENT OF TWO COMPLEMENTARY SYSTEMS FOR THE STUDY OF RECOMBINATION AND PACKAGING OF HEPATITIS C VIRUS GENOMIC RNA USING FLUORESCENT PROTEINS AND LIVE IMAGING

 Coordinatore REGION HOVEDSTADEN 

 Organization address address: KONGENS VAENGE 2
city: HILLEROD
postcode: 3400

contact info
Titolo: Prof.
Nome: Jens
Cognome: Bukh
Email: send email
Telefono: +45 38 62 3632

 Nazionalità Coordinatore Denmark [DK]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2010-RG
 Funding Scheme MC-IRG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-04-01   -   2015-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    REGION HOVEDSTADEN

 Organization address address: KONGENS VAENGE 2
city: HILLEROD
postcode: 3400

contact info
Titolo: Prof.
Nome: Jens
Cognome: Bukh
Email: send email
Telefono: +45 38 62 3632

DK (HILLEROD) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

live    viral    core    limited    biology    virus    recombinant    genetic    recombination    proteins    protein    packaging    cycle    rna    clarify    hcv   

 Obiettivo del progetto (Objective)

'The Hepathitis C Virus (HCV) infects more than 150 million people worldwide and is the major cause of hepatic cirrhosis and hepatocellular carcinoma. Current available treatment options have limited efficacy and result in effective viral suppression only in about 50% of treated patients. In addition, HCV exhibits an extremely high genetic variability, mainly due to lack of proofreading activity of the viral RNA polymerase and its ability to generate recombinant genomes. Genetic diversity allows the virus to evolve variants capable to escape immune response and drug pressure and hampers the development of effective vaccines. Research of novel specific drugs is hindered by our limited understanding of several key steps of the viral life cycle. To clarify different aspects of HCV RNA biology, we propose the development of two new assays based on detection of fluorescent proteins. Our first objective is to use the reconstitution of a GFP protein to measure native recombination capability of HCV under different infection conditions. This part will clarify the relative importance of several factors in the generation on new recombinant forms. Subsequently, we will deploy a system to visualize genomic RNA and viral Core protein simultaneously in live cells. By fusing different fluorophores to RNA-binding proteins and to the Core, we will be able to measure packaging and copackaging efficiencies of HCV. Lastly, we will trace the pathway of RNA molecules and Core using live imaging. This will help identifying the sites of recombination, dimerization and packaging in the cell. Taken together, the data produced will help clarify several important aspects of the viral replication cycle, and identify possible new targets for antiviral intervention. Moreover, the systems proposed represent novel approaches to the study of RNA biology in HCV, providing the Copenhagen Hepatitis C Program with advanced and competitive know-how in the field of HCV research.'

Altri progetti dello stesso programma (FP7-PEOPLE)

IPSMILD (2011)

HUMAN INDUCED PLURIPOTENT STEM CELLS AS A MODEL TO STUDY METABOLIC INHERITED LIVER DISEASES

Read More  

GEOPAL (2008)

"GEOARCHAEOLOGY, PALEOENVIRONMENTS AND LUMINESCENCE GEOCHRONOLOGY IN THE EASTERN ALPINE REALM AND SOUTH AFRICA DURING THE LAST GLACIAL CYCLE (115-11 ka)"

Read More  

FOXP2 NEURAL NETWORK (2013)

A tangled web: Foxp2 and language related neural networks

Read More