MECHANOSENSORYTREES

Role of Mechanosensory Touch-Based Cues on Arborization of Neuronal Dendritic Trees

 Coordinatore TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY 

 Organization address address: TECHNION CITY - SENATE BUILDING
city: HAIFA
postcode: 32000

contact info
Titolo: Mr.
Nome: Mark
Cognome: Davison
Email: send email
Telefono: +972 4 829 3097
Fax: +972 4 823 2958

 Nazionalità Coordinatore Israel [IL]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-09-01   -   2015-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY

 Organization address address: TECHNION CITY - SENATE BUILDING
city: HAIFA
postcode: 32000

contact info
Titolo: Mr.
Nome: Mark
Cognome: Davison
Email: send email
Telefono: +972 4 829 3097
Fax: +972 4 823 2958

IL (HAIFA) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

mechanosensory    arborization    determining    touch    trees    neurons    morphology    signals    mechanosensation    extrinsic    quantitative    input    techniques    dendritic    sensory    influence    inputs    patterns    neuronal    elegans   

 Obiettivo del progetto (Objective)

'To convey sensory touch inputs, neurons must have the ability to sense and translate mechanical stimuli into electrical signals. This process, known as mechanosensation, relies on the proper structuring and development of neuronal dendritic trees (arborization). There is growing evidence supporting the required role of environmental cues in determining the definitive morphology of dendritic trees. In turn, arborization is expected to result from both intrinsic neuronal differentiation as well as extrinsic contributions from the external environment. However, there is little understanding of how mechanosensory signals regulate the morphological arborization process, and conversely how the morphology of dendritic trees affects mechanosensation. Yet, defects in neuronal development and mechanosensory function can contribute to neuro-developmental disorders such as Down’s syndrome and autism. In the present proposal, we aim at deepening our quantitative understanding of the influence of touch-based sensory input in determining dendritic patterns during development. The proposed work is built around three pillars of research using the model organism Caenorhabditis elegans. We will implement (i) live imaging techniques of mechanosensory touch neurons in whole organisms, (ii) statistical models using machine learning to quantify the structure and patterns of neuronal trees, and (iii) behavioral assays of C. elegans to characterize the influence of extrinsic sensory inputs on motility phenotypes. This latter step will rely heavily on engineering fluidics and quantitative visualization techniques. It is anticipated that an integral characterization of the coupling between mechanosensory input and dendritic arborization will pave the way towards a better understanding of neurodegenerative diseases and potential treatment strategies.'

Altri progetti dello stesso programma (FP7-PEOPLE)

QUANTERBIUM (0)

"Quanterbium: Synthesis and photonic application of terbium–modified semiconductor quantum dots for highly sensitive, background-free, multiplexed biosensors"

Read More  

ADERS (2011)

Analysis and Design of Earthquake Resistant Structures

Read More  

FUNICIS (2014)

Functional Ion Conductance and Sensing

Read More