SINGLEION

Spectroscopy and microscopy of single ions in the solid state

 Coordinatore MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V. 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 1˙925˙673 €
 EC contributo 1˙925˙673 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2010-AdG_20100224
 Funding Scheme ERC-AG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-08-01   -   2016-07-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.

 Organization address address: Hofgartenstrasse 8
city: MUENCHEN
postcode: 80539

contact info
Titolo: Ms.
Nome: Irene
Cognome: Weinzierl
Email: send email
Telefono: +49 91316877201
Fax: +49 91316877209

DE (MUENCHEN) hostInstitution 1˙925˙673.00
2    MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.

 Organization address address: Hofgartenstrasse 8
city: MUENCHEN
postcode: 80539

contact info
Titolo: Prof.
Nome: Vahid
Cognome: Sandoghdar
Email: send email
Telefono: +49 9131 6877200
Fax: +49 9131 6877209

DE (MUENCHEN) hostInstitution 1˙925˙673.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

emitters    energy    fundamental    temperatures    laser    ions    detection    single    fluorescence    quantum    spectroscopy    first   

 Obiettivo del progetto (Objective)

'The progress in optical spectroscopy has made it is possible to study individual quantum emitters. However, only a few select “bright” emitters have been detected so far, leaving a large gap in the choice of critical parameters such as wavelength, coherence time, and energy level schemes. In this project, we develop methods for the detection of single emitters with long fluorescence lifetimes. In particular, we concentrate on rare earth ions embedded in crystals, which are of great technological and fundamental interest. To achieve this goal, we exploit methods from ultrahigh resolution microscopy, laser spectroscopy, scanning probe technology, cavity quantum electrodynamics, and plasmonics. The first approach to the detection of single ions at cryogenic temperatures will be to perform direct fluorescence excitation as well as absorption spectroscopy to address single Pr3 ions spectrally within the inhomogeneous line of the sample. Here, we will develop a tunable laser system with sub-kHz linewidth for probing the narrow transitions of the ions. We expect a signal-to-noise ratio of about 10 in this first step. In order to improve this, we will enhance the emission of ions by pursuing two strategies. In the first case, we shall embed doped crystalline films in monolithic Bragg microcavities. In the second approach, we use plasmonic nanoantennas to reduce the radiative lifetime of the ions in the near field. The well-defined energy levels of ions provide ways for the preparation of long-lived coherent states for use in quantum information processing. Furthermore, access to the homogeneous spectra of ions at different temperatures and doping concentrations will shed light on fundamental open questions regarding their interaction with their matrices.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

NUCLEARPOTENCY (2012)

Nuclear foundations of cellular potency

Read More  

HISTANTARTSI (2011)

"Historical memory, Antiquarian Culture and Artistic Patronage: Social Identities in the Centres of Southern Italy between the Medieval and Early Modern Period"

Read More  

TAPAS (2008)

Tracing Antimicrobial peptides and Pheromones in the Amphibian Skin

Read More