Coordinatore |
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Non specificata |
Totale costo | 1˙399˙087 € |
EC contributo | 1˙399 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Anno di inizio | 2011 |
Periodo (anno-mese-giorno) | 2011-12-01 - 2016-11-30 |
# | ||||
---|---|---|---|---|
1 |
UNIVERSITA DEL SALENTO
Organization address
address: PIAZZETA TANCREDI 7 contact info |
IT (LECCE) | beneficiary | 638˙749.84 |
2 |
TECHNISCHE UNIVERSITAT BRAUNSCHWEIG
Organization address
address: POCKELSSTRASSE 14 contact info |
DE (BRAUNSCHWEIG) | hostInstitution | 760˙337.28 |
3 |
TECHNISCHE UNIVERSITAT BRAUNSCHWEIG
Organization address
address: POCKELSSTRASSE 14 contact info |
DE (BRAUNSCHWEIG) | hostInstitution | 760˙337.28 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'This proposal aims at providing fundamental research results in computational mechanical modelling of structural interfaces at different scales, encompassing debonding and contact phenomena. Interfaces are present everywhere in the physical reality, and have a deep impact in civil, mechanical and electronic engineering, biomechanics and material science. Interface mechanical problems are thus multi-disciplinary and involve several length scales. This research is then motivated by the need of transferring the knowledge on properties of interfaces at lower scales to a rational interpretation of their macroscopic behavior, which is essential for the development of truly predictive models as opposed to the empirical, phenomenological models currently available. The main objective of this project is twofold: 1) to develop a multi-scale computational setting to handle modeling of interfacial debonding and contact, featuring a seamless coupling between length scales, and 2) to use such a framework for the development of effective macroscopic mechanical models for debonding and contact, which are able to capture the information stemming from the lower-scale mechanics and morphology, and which are consistent with the observed behavior at various scales. This objective will be pursued mostly at the computational level, but also resorting to laboratory testing and analytical modeling. The project will focus on debonding and contact at macroscopic interfaces where two (or more) interfacial length scales are considered significant for the analysis and these are both (or all) much larger than atomic dimensions. Hence modeling will be conducted within the framework of continuum mechanics at all scales and implemented with the finite element method. Appropriate examples will be considered throughout the project.'