Opendata, web and dolomites

2D-Ink

Ink-Jet printed supercapacitors based on 2D nanomaterials.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 2D-Ink project word cloud

Explore the words cloud of the 2D-Ink project. It provides you a very rough idea of what is the project "2D-Ink" about.

spray    erc    realize    performance    rate    restacking    conventional    printing    nanomaterials    flammability    ultrasonic    manufacturing    weight    jet    transparency    imperative    portable    demonstrated    possibility    electrode    aggregation    charge    flexible    discharge    electronics    industry    metal    flexibility    layers    transition    microelectronics    cycles    ultra    maintaining    supercapacitors    mv    believe    combination    assembled    usd    global    100    nanosheets    time    area    single    light    harvesting    pi    explore    compete    ink    extremely    electrolytes    life    printed    unusually    2dnanocaps    space    portability    films    graphene    power    device    poc    solid    materials    easily    oxides    economic    electrodes    deposition    liquid    lab    supercapacitor    retention    energy    2d    278516    grant    scalable    620189    scaling    exfoliated    composites    layered    storage    scan    5000    technological    market    conductive    capacitance    offers    techniques    opportunity    thin    magnitude    reaching    focussed    viability    atomic    ref   

Project "2D-Ink" data sheet

The following table provides information about the project.

Coordinator
THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN 

Organization address
address: College Green
city: DUBLIN
postcode: 2
website: www.tcd.ie

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Ireland [IE]
 Total cost 149˙774 €
 EC max contribution 149˙774 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-PoC
 Funding Scheme ERC-POC
 Starting year 2015
 Duration (year-month-day) from 2015-04-01   to  2016-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN IE (DUBLIN) coordinator 149˙774.00

Map

 Project objective

This proposal will determine the technical-economic viability of scaling-up ultra-thin, ink-jet printed films based on liquid-phase exfoliated single atomic layers of a range of nanomaterials. The PI has developed methods to produce in liquid nanosheets of a range of layered materials such as graphene, transition metal oxides, etc. These 2D-materials have immediate and far-reaching potential in several high-impact technological applications such as microelectronics, composites and energy harvesting and storage. 2DNanoCaps (ERC ref: 278516) has demonstrated that lab-scale ultra-thin graphene-based supercapacitor electrodes result in unusually high-power and extremely long device life-time (100% capacitance retention for 5000 charge-discharge cycles at the high power scan rate of 10,000 mV/s). This performance is an order of magnitude better than similar systems produced with conventional methods which cause materials restacking and aggregation. A following ERC PoC grant (2D-USD, Project-Number 620189) is currently focussed on up-scaling the production of thin-films deposition methods based on ultrasonic spray for the production of large-area electrodes for supercapacitors applications. In this proposal we want to explore the new concept of manufacturing conductive, robust, thin, easily assembled electrode and solid electrolytes to realize highly-flexible and all-solid-state supercapacitors by ink-jet printing. This opportunity is particularly relevant to the electronics and portable-device industry and offers the possibility to solve flammability issues, maintaining light weight, flexibility, transparency and portability. In order to do so it will be imperative to develop ink-jet printing methods and techniques. We believe our combination of unique materials and cost-effective, robust and production-scalable process of ultra- thin ink-jet printing will enable us to compete for significant global market opportunities in the energy-storage space.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "2D-INK" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "2D-INK" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

MATCH (2020)

Discovering a novel allergen immunotherapy in house dust mite allergy tolerance research

Read More  

GelGeneCircuit (2020)

Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.

Read More  

BECAME (2020)

Bimetallic Catalysis for Diverse Methane Functionalization

Read More