Explore the words cloud of the 2D-Ink project. It provides you a very rough idea of what is the project "2D-Ink" about.
The following table provides information about the project.
Coordinator |
THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Organization address contact info |
Coordinator Country | Ireland [IE] |
Total cost | 149˙774 € |
EC max contribution | 149˙774 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2014-PoC |
Funding Scheme | ERC-POC |
Starting year | 2015 |
Duration (year-month-day) | from 2015-04-01 to 2016-09-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN | IE (DUBLIN) | coordinator | 149˙774.00 |
This proposal will determine the technical-economic viability of scaling-up ultra-thin, ink-jet printed films based on liquid-phase exfoliated single atomic layers of a range of nanomaterials. The PI has developed methods to produce in liquid nanosheets of a range of layered materials such as graphene, transition metal oxides, etc. These 2D-materials have immediate and far-reaching potential in several high-impact technological applications such as microelectronics, composites and energy harvesting and storage. 2DNanoCaps (ERC ref: 278516) has demonstrated that lab-scale ultra-thin graphene-based supercapacitor electrodes result in unusually high-power and extremely long device life-time (100% capacitance retention for 5000 charge-discharge cycles at the high power scan rate of 10,000 mV/s). This performance is an order of magnitude better than similar systems produced with conventional methods which cause materials restacking and aggregation. A following ERC PoC grant (2D-USD, Project-Number 620189) is currently focussed on up-scaling the production of thin-films deposition methods based on ultrasonic spray for the production of large-area electrodes for supercapacitors applications. In this proposal we want to explore the new concept of manufacturing conductive, robust, thin, easily assembled electrode and solid electrolytes to realize highly-flexible and all-solid-state supercapacitors by ink-jet printing. This opportunity is particularly relevant to the electronics and portable-device industry and offers the possibility to solve flammability issues, maintaining light weight, flexibility, transparency and portability. In order to do so it will be imperative to develop ink-jet printing methods and techniques. We believe our combination of unique materials and cost-effective, robust and production-scalable process of ultra- thin ink-jet printing will enable us to compete for significant global market opportunities in the energy-storage space.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "2D-INK" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "2D-INK" are provided by the European Opendata Portal: CORDIS opendata.