Explore the words cloud of the SORBET project. It provides you a very rough idea of what is the project "SORBET" about.
The following table provides information about the project.
Coordinator |
MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Organization address contact info |
Coordinator Country | Germany [DE] |
Total cost | 2˙750˙000 € |
EC max contribution | 2˙750˙000 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2014-ADG |
Funding Scheme | ERC-ADG |
Starting year | 2015 |
Duration (year-month-day) | from 2015-11-01 to 2020-10-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV | DE (Munich) | coordinator | 2˙750˙000.00 |
Spintronics is a vibrant field of research that involves the intimate interaction of magnetic structure on the atomic scale with spin currents and spin-polarized charge currents. SORBET is focussed on an emerging sub-field of spintronics, namely that of spin orbitronics. Recent discoveries in this field concern the interplay of several distinct spin orbit coupling derived phenomena that, together, allow for the highly efficient current induced motion of domain walls (DWs) in magnetic nanowires. It is proposed to explore two classes of domain-wall device concepts: a novel two terminal single-domain wall device composed of a spin-valve based structure that is deposited on a vertical wall or other 3D structure; and a 3D racetrack memory that involves multiple domain walls. The main objectives of the project involve the exploration of atomically engineered thin film magnetic nano-structures that could enable these revolutionary devices, and to unravel and exploit the new physics of this emerging field of research. To achieve these objectives fundamental breakthroughs are needed both in the thin film materials themselves and in the physics that determines the material properties and controls the motion of the DWs. These devices are innately three-dimensional and thus can overcome challenges that limit the scaling of existing two-dimensional electronic technologies. Novel methods to fabricate these devices will be explored, especially, the use of atomic layer deposition and 3D printing techniques. An important objective will be to understand the origin of the spin orbit torques that drive domain walls in nanowires and the detailed relationship of these torques to the DW structure; it is anticipated that this will enable even more complex 3D spin textures to be realized that have, for example, much lower threshold currents for motion than is currently possible, and that exhibit topological transport phenomena that could even be used to generate or detect domain walls.
year | authors and title | journal | last update |
---|---|---|---|
2018 |
Koyel Banerjee-Ghosh, Oren Ben Dor, Francesco Tassinari, Eyal Capua, Shira Yochelis, Amir Capua, See-Hun Yang, Stuart S. P. Parkin, Soumyajit Sarkar, Leeor Kronik, Lech Tomasz Baczewski, Ron Naaman, Yossi Paltiel Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates published pages: 1331-1334, ISSN: 0036-8075, DOI: 10.1126/science.aar4265 |
Science 360/6395 | 2019-05-22 |
2018 |
A. Markou, J. M. Taylor, A. Kalache, P. Werner, S. S. P. Parkin, C. Felser Noncollinear antiferromagnetic Mn 3 Sn films published pages: , ISSN: 2475-9953, DOI: 10.1103/physrevmaterials.2.051001 |
Physical Review Materials 2/5 | 2019-05-22 |
2018 |
Chirag Garg, Aakash Pushp, See-Hun Yang, Timothy Phung, Brian P. Hughes, Charles Rettner, Stuart S. P. Parkin Highly Asymmetric Chiral Domain-Wall Velocities in Y-Shaped Junctions published pages: 1826-1830, ISSN: 1530-6984, DOI: 10.1021/acs.nanolett.7b05086 |
Nano Letters 18/3 | 2019-05-22 |
2019 |
Asif Ali Khan, Fazal Hameed, Robin Blasing, Stuart Parkin, Jeronimo Castrillon RTSim: A Cycle-Accurate Simulator for Racetrack Memories published pages: 43-46, ISSN: 1556-6056, DOI: 10.1109/lca.2019.2899306 |
IEEE Computer Architecture Letters 18/1 | 2019-05-22 |
2019 |
See-Hun Yang, Chirag Garg, Stuart S. P. Parkin Chiral exchange drag and chirality oscillations in synthetic antiferromagnets published pages: , ISSN: 1745-2473, DOI: 10.1038/s41567-019-0438-3 |
Nature Physics | 2019-05-22 |
2018 |
Panagiotis Ch. Filippou, Jaewoo Jeong, Yari Ferrante, See-Hun Yang, Teya Topuria, Mahesh G. Samant, Stuart S. P. Parkin Chiral domain wall motion in unit-cell thick perpendicularly magnetized Heusler films prepared by chemical templating published pages: , ISSN: 2041-1723, DOI: 10.1038/s41467-018-07091-3 |
Nature Communications 9/1 | 2019-05-22 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SORBET" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "SORBET" are provided by the European Opendata Portal: CORDIS opendata.