Explore the words cloud of the SOLARACT project. It provides you a very rough idea of what is the project "SOLARACT" about.
The following table provides information about the project.
Coordinator |
UNIVERSITAT WIEN
Organization address contact info |
Coordinator Country | Austria [AT] |
Project website | http://theochem.univie.ac.at/solaract/ |
Total cost | 166˙156 € |
EC max contribution | 166˙156 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2015 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2016 |
Duration (year-month-day) | from 2016-04-01 to 2018-03-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | UNIVERSITAT WIEN | AT (WIEN) | coordinator | 166˙156.00 |
SolarAct aims at a fundamental theoretical understanding of transition metal catalysts that mediate the photochemical bond cleavage of the dinitrogen molecule.
The efficient activation of dinitrogen (N2) as an abundant and thus very cheap resource is a promising target for the development of sustainable chemistry, e.g. to produce NH3 as a “solar fuel” or synthesize value-added products relevant for chemical industry. A new approach in N2 activation is the photolytic N-N bond cleavage in linear M-N-N-M complexes, for which five synthetic examples are known. However, the dynamical processes inducing N-N cleavage in these complexes after light excitation are not understood at a molecular level.
SolarAct is the first research project to unravel the working principles of the existing N2 photoactivation catalysts using a combination of ab initio excited state dynamics simulations and multiconfigurational quantum chemistry methods. The project will push the boundaries of excited state dynamics simulations and provide a proof of principle for their application to dimeric transition metal complexes with demanding electronic structures. The key requirements for N2 photocleavage will be rationalized by systematic in silico variations of the known systems, culminating in improved N2 photoactivation catalysts according to a design target formulated for SolarAct.
The researcher will transfer expertise in computational transition metal chemistry and theoretical spectroscopy to the host group and will gain expertise in novel methods for static and dynamic chemistry problems. A cross-sectorial and interdisciplinary workshop will increase the researcher's and host's networks. The researcher will emerge from SolarAct fully qualified for an independent career, including a unique, highly competitive research profile, enhanced presentation proficiency, optimal teaching and management skills, a wide scientific network and a breadth of dissemination and public engagement experiences.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SOLARACT" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "SOLARACT" are provided by the European Opendata Portal: CORDIS opendata.
Realistic Assessment of Historical Masonry Bridges under Extreme Environmental Actions
Read MoreUsing a novel protein degradation approach to uncover IRF4-regulated genes in plasma cells
Read MoreFarm Accountancy Data as a Source for the History of European Agriculture
Read More