Opendata, web and dolomites

CRESUCHIRP SIGNED

Ultrasensitive Chirped-Pulse Fourier Transform mm-Wave Detection of Transient Species in Uniform Supersonic Flows for Reaction Kinetics Studies under Extreme Conditions

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "CRESUCHIRP" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITE DE RENNES I 

Organization address
address: RUE DU THABOR 2
city: RENNES CEDEX
postcode: 35065
website: www.univ-rennes1.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Project website https://ipr.univ-rennes1.fr/cresuchirp-ERC
 Total cost 2˙100˙230 €
 EC max contribution 2˙100˙230 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-AdG
 Funding Scheme ERC-ADG
 Starting year 2016
 Duration (year-month-day) from 2016-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITE DE RENNES I FR (RENNES CEDEX) coordinator 2˙100˙230.00

Map

 Project objective

This proposal aims to develop a combination of a chirped-pulse (sub)mm-wave rotational spectrometer with uniform supersonic flows generated by expansion of gases through Laval nozzles and apply it to problems at the frontiers of reaction kinetics. The CRESU (Reaction Kinetics in Uniform Supersonic Flow) technique, combined with laser photochemical methods, has been applied with great success to perform research in gas-phase chemical kinetics at low temperatures, of particular interest for astrochemistry and cold planetary atmospheres. Recently, the PI has been involved in the development of a new combination of the revolutionary chirped pulse broadband rotational spectroscopy technique invented by B. Pate and co-workers with a novel pulsed CRESU, which we have called Chirped Pulse in Uniform Flow (CPUF). Rotational cooling by frequent collisions with cold buffer gas in the CRESU flow at ca. 20 K drastically increases the sensitivity of the technique, making broadband rotational spectroscopy suitable for detecting a wide range of transient species, such as photodissociation or reaction products. We propose to exploit the exceptional quality of the Rennes CRESU flows to build an improved CPUF instrument (only the second worldwide), and use it for the quantitative determination of product branching ratios in elementary chemical reactions over a wide temperature range (data which are sorely lacking as input to models of gas-phase chemical environments), as well as the detection of reactive intermediates and the testing of modern reaction kinetics theory. Low temperature reactions will be initially targeted; as it is here that there is the greatest need for data. A challenging development of the technique towards the study of high temperature reactions is also proposed, exploiting existing expertise in high enthalpy sources.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CRESUCHIRP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CRESUCHIRP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Mu-MASS (2019)

Muonium Laser Spectroscopy

Read More  

MOCHA (2019)

Understanding and leveraging ‘moments of change’ for pro-environmental behaviour shifts

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More