Opendata, web and dolomites

MULTIZONAL SCAFFOLD TERMINATED

Multizonal scaffold system based on collagen and copper doped mesoporous bioactive glass microspheres for dual release of growth factors for application as wound dressing material.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MULTIZONAL SCAFFOLD project word cloud

Explore the words cloud of the MULTIZONAL SCAFFOLD project. It provides you a very rough idea of what is the project "MULTIZONAL SCAFFOLD" about.

zonal    turku    fellows    structure    international    universities    dressing    italy    erlangen    involvement    glass    burden    col    researcher    vascular    edge    platelet    materials    healthcare    antimicrobial    recognised    bb    profiles    supervision    extensive    nuremberg    until    reuters    science    mc    release    chronic    prof    defended    player    multifunctional    components    tests    university    depict    pdgf    profound    mbg    respected    bioactive    collagen    designed    hosting    consecutive    molecules    original    nganga    vitro    inner    he    mentoring    innovative    create    thomson    biomaterials    finland    delayed    serving    six    papers    angiogenetic    she    models    broad    layer    named    functional    engineering    awards    scaffold    incorporated    bioactivity    germany    accelerate    cutting    foreign    copper    mesoporous    culture    cu    beneficiary    cited    previously    outer    endothelial    received    financial    degradable    providers    boccaccini    doped    first    cell    thesis    dr    synergy    vegf    wounds    authored    phd    wound    treatment    attempt    2013    healing   

Project "MULTIZONAL SCAFFOLD" data sheet

The following table provides information about the project.

Coordinator
FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN NUERNBERG 

Organization address
address: SCHLOSSPLATZ 4
city: ERLANGEN
postcode: 91054
website: www.uni-erlangen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 171˙460 €
 EC max contribution 171˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-CAR
 Starting year n.a.
 Duration (year-month-day) from 0000-00-00   to  0000-00-00

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN NUERNBERG DE (ERLANGEN) coordinator 171˙460.00

Map

 Project objective

This project is an attempt to develop an effective bioactive wound dressing for the treatment of chronic non-healing wounds that until now depict a major challenge and financial burden to healthcare providers. We propose a zonal, multifunctional scaffold based on collagen (COL) and copper-doped mesoporous bioactive glass (Cu-MBG) serving as release system for vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF-BB). The degradable scaffold system is expected to accelerate the wound healing process due to synergy of angiogenetic, bioactivity, and antimicrobial characteristics. This will be the first attempt to create a zonal COL-MBG scaffold system with release of three functional molecules, of which PDGF-BB has not previously been incorporated to MBG. Zonal design enables designed consecutive release profiles, e.g. immediate PDGF-BB from the outer layer and delayed VEGF release from the inner layer of the scaffold. The structure of the scaffold as well as distribution of specific components and their functionality will be characterized using innovative in vitro models including cell culture tests.

The experienced researcher Dr. Nganga defended her PhD-thesis 2013 at University of Turku, Finland and has authored six original research papers. She has profound experience in biomaterials research based on involvement in cutting edge research at Universities in Germany, Finland and Italy. The beneficiary the Department of Materials Science and Engineering and the Institute of Biomaterials at University of Erlangen-Nuremberg is a well-respected international player in biomaterials research with extensive experience of hosting foreign researchers, including MC fellows. Prof. A.R. Boccaccini is a highly recognised researcher in the biomaterials field with broad mentoring and research supervision experience. He has received numerous international awards and has recently been named a Highly Cited Researcher by Thomson Reuters.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MULTIZONAL SCAFFOLD" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MULTIZONAL SCAFFOLD" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MarshFlux (2020)

The effect of future global climate and land-use change on greenhouse gas fluxes and microbial processes in salt marshes

Read More  

TRACE-AD (2019)

Tracking the Effects of Amyloid and Tau Pathology on Brain Systems and Cognition in Early Alzheimer’s Disease

Read More  

TheaTheor (2018)

Theorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater

Read More