Opendata, web and dolomites

PHOTORNA SIGNED

Development of photoswitchable ligands for the reversible and selective assembly with RNA

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PHOTORNA project word cloud

Explore the words cloud of the PHOTORNA project. It provides you a very rough idea of what is the project "PHOTORNA" about.

indigo    exhibit    antimicrobial    professional    affinity    time    innovative    binding    therapy    modified    comprise    dynamics    possibilities    readily    core    irradiation    activated    course    tuning    topical    character    functional    pattern    conjugates    tested    systematic    fulgide    reversible    selectivity    reversibly    function    physiological    career    ligands    anticancer    hence    association    photoinduced    rna    fine    ligand    identification    antiviral    platform    chosen    possesses    researcher    maturity    spectroscopic    toward    derivatives    generation    bifunctional    acid    mainly    gives    tool    opportunity    photocontrollable    binders    special    excellent    light    spectrometer    structure    structures    drugs    designed    extensive    synthesized    ribonucleic    inside    surprisingly    responsive    relationships    photo    malfunction    library    varied    easily    units    interdisciplinary    photochromic    photoswitchable    hemi    anticipated    direct    forms    nmr    interactions    substitution    photoactive    pharmacological   

Project "PHOTORNA" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAET SIEGEN 

Organization address
address: ADOLF REICHWEIN STRASSE 2A
city: SIEGEN
postcode: 57076
website: www.uni-siegen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 159˙460 €
 EC max contribution 159˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-10-01   to  2019-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAET SIEGEN DE (SIEGEN) coordinator 159˙460.00

Map

 Project objective

The proposed project aims at the development of novel functional ligands whose association with ribonucleic acid (RNA) is reversibly activated by light. As several RNA forms are essential key elements in physiological processes, the control of their function or malfunction by the reversible binding of photoswitchable ligands possesses a great potential as a tool in anticancer, antiviral and antimicrobial therapy. Surprisingly, this innovative approach towards a controlled reversible generation of RNA binders was mainly neglected in this highly topical research field. Hence, in this project photochromic hemi-indigo and fulgide derivatives are chosen as a platform for the design of photo-responsive RNA ligands, because i) they exhibit general features of RNA binders; ii) their structure can be reversibly modified by light, iii) the core structures are readily synthesized, and iii) the substitution pattern can be easily varied to enable fine-tuning of binding selectivity based on structure-activity relationships. In addition, conjugates that comprise two photoactive RNA-binding units will be obtained and studied because such bifunctional binders are expected to have very high affinity and selectivity toward RNA. An extensive library of derivatives will be synthesized and tested for their photocontrollable association with RNA. As a special method, real-time NMR-spectroscopic studies with direct irradiation of the sample inside a specifically designed spectrometer will be used to assess in detail the dynamics in the course of the photoinduced ligand–RNA interactions. Overall, it is anticipated that this systematic approach will enable the identification and development of lead structures for controllable RNA-targeting drugs with a great pharmacological potential. Moreover, the high interdisciplinary, innovative character of this challenging project gives the researcher an excellent opportunity to achieve professional maturity and open up best career possibilities.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PHOTORNA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PHOTORNA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

SSHelectPhagy (2019)

Regulation of Selective autophagy by sulfide through persulfidation of protein targets.

Read More  

CODer (2020)

The molecular basis and genetic control of local gene co-expression and its impact in human disease

Read More  

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More