Opendata, web and dolomites

PHOTORNA SIGNED

Development of photoswitchable ligands for the reversible and selective assembly with RNA

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PHOTORNA project word cloud

Explore the words cloud of the PHOTORNA project. It provides you a very rough idea of what is the project "PHOTORNA" about.

chosen    fulgide    spectroscopic    inside    photochromic    career    affinity    bifunctional    binding    fine    readily    conjugates    indigo    special    light    researcher    easily    malfunction    professional    tool    binders    mainly    ligand    course    surprisingly    rna    systematic    activated    photoswitchable    photocontrollable    forms    selectivity    platform    drugs    physiological    ligands    pattern    structure    time    irradiation    innovative    nmr    extensive    hemi    anticipated    identification    character    hence    excellent    exhibit    relationships    opportunity    ribonucleic    photo    functional    pharmacological    varied    structures    core    acid    reversible    derivatives    generation    function    possibilities    responsive    anticancer    antiviral    units    designed    possesses    interdisciplinary    gives    dynamics    antimicrobial    toward    modified    topical    synthesized    therapy    photoactive    photoinduced    reversibly    interactions    tested    spectrometer    direct    library    comprise    maturity    association    substitution    tuning   

Project "PHOTORNA" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAET SIEGEN 

Organization address
address: ADOLF REICHWEIN STRASSE 2A
city: SIEGEN
postcode: 57076
website: www.uni-siegen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 159˙460 €
 EC max contribution 159˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-10-01   to  2019-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAET SIEGEN DE (SIEGEN) coordinator 159˙460.00

Map

 Project objective

The proposed project aims at the development of novel functional ligands whose association with ribonucleic acid (RNA) is reversibly activated by light. As several RNA forms are essential key elements in physiological processes, the control of their function or malfunction by the reversible binding of photoswitchable ligands possesses a great potential as a tool in anticancer, antiviral and antimicrobial therapy. Surprisingly, this innovative approach towards a controlled reversible generation of RNA binders was mainly neglected in this highly topical research field. Hence, in this project photochromic hemi-indigo and fulgide derivatives are chosen as a platform for the design of photo-responsive RNA ligands, because i) they exhibit general features of RNA binders; ii) their structure can be reversibly modified by light, iii) the core structures are readily synthesized, and iii) the substitution pattern can be easily varied to enable fine-tuning of binding selectivity based on structure-activity relationships. In addition, conjugates that comprise two photoactive RNA-binding units will be obtained and studied because such bifunctional binders are expected to have very high affinity and selectivity toward RNA. An extensive library of derivatives will be synthesized and tested for their photocontrollable association with RNA. As a special method, real-time NMR-spectroscopic studies with direct irradiation of the sample inside a specifically designed spectrometer will be used to assess in detail the dynamics in the course of the photoinduced ligand–RNA interactions. Overall, it is anticipated that this systematic approach will enable the identification and development of lead structures for controllable RNA-targeting drugs with a great pharmacological potential. Moreover, the high interdisciplinary, innovative character of this challenging project gives the researcher an excellent opportunity to achieve professional maturity and open up best career possibilities.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PHOTORNA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PHOTORNA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Migration Ethics (2019)

Migration Ethics

Read More  

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More  

Cata-rotors (2019)

Visualising age- and cataract-related changed within cell membranes of human eye lens using molecular rotors

Read More