Explore the words cloud of the TRAIN SPOTTING project. It provides you a very rough idea of what is the project "TRAIN SPOTTING" about.
The following table provides information about the project.
Coordinator |
MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Organization address contact info |
Coordinator Country | Germany [DE] |
Project website | https://www.mpi-cbg.de/research-groups/current-groups/gaia-pigino/research-focus/ |
Total cost | 171˙460 € |
EC max contribution | 171˙460 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2016 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2017 |
Duration (year-month-day) | from 2017-08-01 to 2019-09-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV | DE (MUENCHEN) | coordinator | 171˙460.00 |
Cilia are highly conserved eukaryotic organelles that, with the exception of fungi and higher plants are present in nearly all types of organisms from protists to mammals. Through their motility, sensory, and signaling functions cilia play crucial roles in human physiology and development. Defects in cilia have profound impact on human health. Cilia assembly requires a dedicated protein shuttle, intraflagellar transport (IFT), a bidirectional motility of multi-megadalton protein arrays along ciliary microtubules. Although the overall mechanism of transport is generally described, complete high resolution structural description is necessary for the detailed understanding of this complex system. I propose the in-depth structural analysis of IFT features, train types, cargoes, interactions with the molecular motors in the cilia model organism Chlamydomonas. This approach will bring us both a molecular resolution of incorporated protein complexes and dynamic overview of their relations. The project objectives will be achieved by an elabrated chain of methods based on correlative microscopy, combining the specificity of nanobody labelling with the structure preservation and molecular resolution of cryo-electron tomography. We plan to develop two independent workflows for tracing the IFT features based on the most progressive cryo methods in the cooperation with the project partners. It is anticipated that an detailed ultrastructural 3D analysis of intraflagellar transport will provide new fundamental mechanistic insights into this very important biological process. We also expect an overlap to the whole structural biology field due to the methodical development, which will be universally applicable for another structural studies.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TRAIN SPOTTING" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "TRAIN SPOTTING" are provided by the European Opendata Portal: CORDIS opendata.