Opendata, web and dolomites

LockChip

A custom lock chip for compact NMR

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 LockChip project word cloud

Explore the words cloud of the LockChip project. It provides you a very rough idea of what is the project "LockChip" about.

price    nuclear    huge    frequency    absolute    emergence    external    periods    100k    lack    chip    lock    vast    strength    issue    dominated    remedy    magnets    cramped    15    lower    extended    tabletop    extract    generation    helium    monitoring    size    barrier    special    entitled    temperature    cube    resonance    bores    time    wire    analyte    versatility    fits    superconducting    compact    maintenance    erroneous    magnetic    permanent    drastically    molecular    ideal    drifts    mixed    significantly    side    nmr    factories    mm    portable    automation    specificity    provides    market    expensive    vendor    liquid    detector    magnet    detection    introduction    accuracy    ownership    brings    extremely    chemical    big    substance    connect    tags    detect    circuitry    forensic    opening    professional    shifts    dependent    mainly    solution    leads    lockchip    inherent    channel    markets    miniaturized    proportional    spectrometers    teaching    factory    easily    signal   

Project "LockChip" data sheet

The following table provides information about the project.

Coordinator
KARLSRUHER INSTITUT FUER TECHNOLOGIE 

Organization address
address: KAISERSTRASSE 12
city: KARLSRUHE
postcode: 76131
website: www.kit.edu

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 150˙000 €
 EC max contribution 150˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-PoC
 Funding Scheme ERC-POC
 Starting year 2017
 Duration (year-month-day) from 2017-04-01   to  2018-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KARLSRUHER INSTITUT FUER TECHNOLOGIE DE (KARLSRUHE) coordinator 150˙000.00

Map

 Project objective

Nuclear magnetic resonance is an important chemical analysis method, because of its inherent chemical specificity, its versatility to extract molecular information, and its absolute accuracy. The market has been dominated by large superconducting NMR magnets with price tags of many 100k €. The emergence of less expensive low field compact (tabletop and portable) NMR spectrometers, based on the use of permanent magnets, with price tags around a factor of 10 lower than superconducting magnets, brings a drastically lower cost-of-ownership, and the significantly lower need for external support, maintenance, and lack of liquid Helium, which is opening up new applications and huge new markets for NMR.

Compact NMR spectrometers, mainly used for teaching but targeting professional applications (e.g. real time process monitoring in chemical factories), have very cramped magnet bores (15 mm cube) mainly needed for the generation and detection of analyte signal. The magnetic field strength of their permanent magnets is strongly temperature dependent, so that the proportional NMR frequency drifts during measurements that are taken over extended time periods, which can lead to erroneous resonance results and is a major challenge, especially for forensic applications, or applications in factories. The remedy is to detect the temperature-dependent frequency shifts of a special lock substance, which is typically mixed into the sample, but cannot be done in the case of factory automation applications.

This represents a big barrier for the introduction of compact NMR into many professional applications.

Our miniaturized NMR detector, entitled LockChip, provides an ideal solution for all aspects. Its extremely compact size, easily fits side-by-side with the vendor NMR detector, with only two leads of wire needed to connect it to the lock channel circuitry. Our chip can therefore solve this issue, and help to open up a vast market.

 Publications

year authors and title journal last update
List of publications.
2017 Mazin Jouda, Robert Kamberger, Jochen Leupold, Nils Spengler, Jürgen Hennig, Oliver Gruschke, Jan G. Korvink
A comparison of Lenz lenses and LC resonators for NMR signal enhancement
published pages: e21357, ISSN: 1552-5031, DOI: 10.1002/cmr.b.21357
Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering 47B/3 2020-01-23

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LOCKCHIP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LOCKCHIP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More  

RODRESET (2019)

Development of novel optogenetic approaches for improving vision in macular degeneration

Read More