Opendata, web and dolomites

ELECTROQUANTUM-2D SIGNED

Atomistic Electrodynamics-Quantum Mechanical Framework for Characterizing, Manipulating and Optimizing Nonlinear Optical Processes in 2D Materials

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ELECTROQUANTUM-2D project word cloud

Explore the words cloud of the ELECTROQUANTUM-2D project. It provides you a very rough idea of what is the project "ELECTROQUANTUM-2D" about.

optoelectronic    linear    modulation    amplification    interdisciplinary    edge    training    phosphorene    prerequisite    integrates    framework    confinement    switching    metal    sensing    media    models    seamlessly    uk    solar    impacts    two    monolayers    bulk    computing    tremendous    efficient    exhibit    enabled    material    software    atomistic    industry    size    dichalcogenides    signal    attainable    dimensional    fast    disciplines    optical    first    potentials    nop    hpc    nonlocal    cells    truncation    quantum    career    periodic    model    transition    finite    biosensing    performance    commercialization    exchange    characterizing    implementing    optimizing    faces    compare    nonlinear    science    codes    modeling    simulating    theoretical    students    transferrable    microscopy    mechanical    graphene    manipulating    extraordinary    incorporate    host    computer    2d    implements    photonic    materials    detection    industrial    macroscopic    electrodynamics   

Project "ELECTROQUANTUM-2D" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY COLLEGE LONDON 

Organization address
address: GOWER STREET
city: LONDON
postcode: WC1E 6BT
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-01-15   to  2020-03-13

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE LONDON UK (LONDON) coordinator 183˙454.00

Map

 Project objective

Two-dimensional (2D) materials, which include graphene, phosphorene, and transition metal dichalcogenides monolayers, exhibit extraordinary linear and nonlinear optical properties not attainable in bulk media. They find tremendous potentials in many photonic and optoelectronic applications, such as all-optical signal processing, optical amplification, nonlinear switching, optical microscopy, quantum detection, and sensing. The availability of first-principle, fast, efficient computer codes is a prerequisite to the bottom-up design of 2D materials. However, theoretical modeling of 2D materials faces great challenges as it needs to incorporate effects of finite size, edge truncation, periodic modulation, nonlocal, and quantum confinement. Here, we aim at developing atomistic electrodynamics-quantum mechanical theoretical models and implementing them in high-performance computing (HPC) software for characterizing, manipulating, and optimizing nonlinear optical processes (NOP) in 2D materials. The main objectives of this ambitious project are: (1) To develop a macroscopic electrodynamics approach for simulating NOP in 2D materials. (2) To develop an atomistic electrodynamics quantum mechanical framework for modeling NOP in 2D materials and compare the atomistic model to the macroscopic approach. (3) To develop user-friendly and reliable HPC software that seamlessly integrates and implements the theoretical models. (4) Using the software and theoretical models, emerging applications of 2D materials will be investigated, including solar cells, nonlinear microscopy, and biosensing. The project will have high impacts on: (1) advances in the science, technology, and industry of UK and Europe; (2) applicant’s future career development; (3) research, industrial, and transferrable knowledge exchange between the host and applicant; (4) design and commercialization of 2D material enabled devices; (5) training of students and researchers in several interdisciplinary disciplines.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ELECTROQUANTUM-2D" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ELECTROQUANTUM-2D" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

PmNC (2019)

Policy-making of early nature conservation. The Netherlands and the United Kingdom compared, 1930-1960

Read More  

TheaTheor (2018)

Theorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater

Read More  

DNANanoProbes (2019)

Design of light-harvesting DNA-nanoprobes with ratiometric signal amplification for fluorescence imaging of live cells.

Read More