Opendata, web and dolomites

LIB STRESS SIGNED

In situ stress analysis of lithium-ion battery cell

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 LIB STRESS project word cloud

Explore the words cloud of the LIB STRESS project. It provides you a very rough idea of what is the project "LIB STRESS" about.

ion    explosions    cathode    dealing    thermal    excessive    overcharged    branch    combined    ing    crack    multiple    lib    placed    insertion    overcharging    discharge    sourced    reaction    model    electrode    electrochemical    comsol    report    code    safety    continuum    organisation    despite    cutting    electric    reactions    final    separator    recalls    flammable    abnormal    stress    models    temperatures    mechanical    batteries    published    reported    charge    damage    capacity    runaway    vehicles    overheated    manufacturers    gases    discrete    standards    interfaces    extreme    finite    pfm    surfaces    data    physics    anode    lithium    structure    libs    fracture    degradation    found    fire    edge    ideal    accidents    projectile    rupture    imposed    temperature    microfracture    electrodes    electronics    happen    permeable    particles    analysing    membrane    cells    deformation    releasing    fading    battery    cycles    constraints    rapid    handle    airplanes    cell    validate    performance    materials    stresses   

Project "LIB STRESS" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF WARWICK 

Organization address
address: Kirby Corner Road - University House
city: COVENTRY
postcode: CV4 8UW
website: www.warwick.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-07-30   to  2020-07-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF WARWICK UK (COVENTRY) coordinator 195˙454.00

Map

 Project objective

Lithium-ion batteries (LIB) are found in many applications such as consumer electronics, electric vehicles and airplanes. However, despite of the high safety standards being imposed, there have been many reported accidents as well as recalls by some manufacturers. Most accidents can be sourced to runaway reactions, which could happen if the LIBs are overheated or overcharged. Thermal runaway can cause rapid temperature rise in the LIB, resulting in excessive thermal stress in the electrodes and the separator, a permeable membrane placed between the anode and cathode. Such mechanical degradation can cause the fading of battery capacity, and in extreme cases result in cell rupture, releasing of flammable gases, fire and explosions.

The proposed research is aimed at analysing the thermal behaviour and structure response of LIB cells during charge and discharge cycles as well as abnormal conditions such as overcharging and under impact by a projectile. The cutting edge phase field model (PFM) will be combined with multi-physics finite element code COMSOL to analyse the deformation induced stresses induced by insertion of lithium in the electrodes under constraints and high temperatures as well as the resulting crack or microfracture in the electrode materials. The PFM is different from discrete fracture and continuum damage models and ideal for dealing with branch crack and multiple crack problems. The specific objectives of the research include: - Investigate LIB cell temperature changes under abnormal conditions such as overcharging and under impact by a projectile. - Implement the PFM in COMSOL to handle the electrochemical reaction on surfaces, phase interfaces and crack surfaces in lithium ion battery electrode particles. - Validate the above with published results and new data to be generated by partner organisation. - Investigate the combined effects of electrochemical, mechanical and thermal on LIB behaviour and performance. - Final analysis and report.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LIB STRESS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LIB STRESS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

RAMBEA (2019)

Realistic Assessment of Historical Masonry Bridges under Extreme Environmental Actions

Read More  

PROSPER (2019)

Politics of Rulemaking, Orchestration of Standards, and Private Economic Regulations

Read More  

IRF4 Degradation (2019)

Using a novel protein degradation approach to uncover IRF4-regulated genes in plasma cells

Read More