Opendata, web and dolomites

APES SIGNED

Accuracy and precision for molecular solids

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "APES" data sheet

The following table provides information about the project.

Coordinator
UNIVERZITA KARLOVA 

Organization address
address: OVOCNY TRH 560/5
city: PRAHA 1
postcode: 116 36
website: www.cuni.cz

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Czech Republic [CZ]
 Project website http://quantum.karlov.mff.cuni.cz/
 Total cost 924˙375 €
 EC max contribution 924˙375 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-01-01   to  2022-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERZITA KARLOVA CZ (PRAHA 1) coordinator 924˙375.00

Map

 Project objective

The description of high pressure phases or polymorphism of molecular solids represents a significant scientific challenge both for experiment and theory. Theoretical methods that are currently used struggle to describe the tiny energy differences between different phases. It is the aim of this project to develop a scheme that would allow accurate and reliable predictions of the binding energies of molecular solids and of the energy differences between different phases. To reach the required accuracy, we will combine the coupled cluster approach, widely used for reference quality calculations for molecules, with the random phase approximation (RPA) within periodic boundary conditions. As I have recently shown, RPA-based approaches are already some of the most accurate and practically usable methods for the description of extended systems. However, reliability is not only a question of accuracy. Reliable data need to be precise, that is, converged with the numerical parameters so that they are reproducible by other researchers. Reproducibility is already a growing concern in the field. It is likely to become a considerable issue for highly accurate methods as the calculated energies have a stronger dependence on the simulation parameters such as the basis set size. Two main approaches will be explored to assure precision. First, we will develop the so-called asymptotic correction scheme to speed-up the convergence of the correlation energies with the basis set size. Second, we will directly compare the lattice energies from periodic and finite cluster based calculations. Both should yield identical answers, but if and how the agreement can be reached for general system is currently far from being understood for methods such as coupled cluster. Reliable data will allow us to answer some of the open questions regarding the stability of polymorphs and high pressure phases, such as the possibility of existence of high pressure ionic phases of water and ammonia.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "APES" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "APES" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

TechChild (2019)

Just because we can, should we? An anthropological perspective on the initiation of technology dependence to sustain a child’s life

Read More  

MITOvTOXO (2020)

Understanding how mitochondria compete with Toxoplasma for nutrients to defend the host cell

Read More  

TransTempoFold (2019)

A need for speed: mechanisms to coordinate protein synthesis and folding in metazoans

Read More