Opendata, web and dolomites

NOISE SIGNED

Noise-Sensitivity Everywhere

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NOISE project word cloud

Explore the words cloud of the NOISE project. It provides you a very rough idea of what is the project "NOISE" about.

pi    question    iff    random    operator    katok    inputs    fk    planar    dynamics    groups    amenability    recast    volume    glauber    influence    sl    unpredictable    statistical    weight    proportion    vs    iid    structures    mixes    mixing    output    ell2    macroscopic    striking    logarithmic    percolation    boolean    geometry    sensitive    noise    hypercontractivity    passage    quantum    hypercube    bits    oacute    says    ising    finite    obstacle    cycle    structure    critical    eigenfunctions    transformation    ways    ideas    permutation    certain    exchange    entropy    physics    directions    tiny    science    alternating    sensitivity    outstanding    group    generating    kalai    betti    resampling    models    refuting    first    universality    time    f2    naturally    fast    motivated    questions    connecting    prove    perhaps    babai    theory    poly    notion    conjecture    interchange       arises    environment    walk    input    near    linear    interval    transition    friedgut    model    function    gaboriau    mechanics    energy    proving    fourier    computer   

Project "NOISE" data sheet

The following table provides information about the project.

Coordinator
MAGYAR TUDOMANYOS AKADEMIA RENYI ALFRED MATEMATIKAI KUTATOINTEZET 

Organization address
address: REALTANODA UTCA 13-15
city: Budapest
postcode: 1053
website: http://www.renyi.hu

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Hungary [HU]
 Total cost 1˙386˙363 €
 EC max contribution 1˙386˙363 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-COG
 Funding Scheme ERC-COG
 Starting year 2018
 Duration (year-month-day) from 2018-02-01   to  2023-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    MAGYAR TUDOMANYOS AKADEMIA RENYI ALFRED MATEMATIKAI KUTATOINTEZET HU (Budapest) coordinator 1˙386˙363.00

Map

 Project objective

Noise-sensitivity of a Boolean function with iid random input bits means that resampling a tiny proportion of the input makes the output unpredictable. This notion arises naturally in computer science, but perhaps the most striking example comes from statistical physics, in large part due to the PI: the macroscopic geometry of planar percolation is very sensitive to noise. This can be recast in terms of Fourier analysis on the hypercube: a function is noise sensitive iff most of its Fourier weight is on 'high energy' eigenfunctions of the random walk operator.

We propose to use noise sensitivity ideas in three main directions:

(A) Address some outstanding questions in the classical case of iid inputs: universality in critical planar percolation; the Friedgut-Kalai conjecture on Fourier Entropy vs Influence; noise in First Passage Percolation.

(B) In statistical physics, a key example is the critical planar FK-Ising model, with noise being Glauber dynamics. One task is to prove noise sensitivity of the macroscopic structure. A key obstacle is that hypercontractivity of the critical dynamics is not known.

(C) Babai’s conjecture says that random walk on any finite simple group, with any generating set, mixes in time poly-logarithmic in the volume. Two key open cases are the alternating groups and the linear groups SL(n,F2). We will approach these questions by first proving fast mixing for certain macroscopic structures. For permutation groups, this is the cycle structure, and it is related to a conjecture of Tóth on the interchange process, motivated by a phase transition question in quantum mechanics.

We will apply ideas of statistical physics to group theory in other novel ways: using near-critical FK-percolation models to prove a conjecture of Gaboriau connecting the first ell2-Betti number of a group to its cost, and using random walk in random environment to prove the amenability of the interval exchange transformation group, refuting a conjecture of Katok.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NOISE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NOISE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More  

CUSTOMER (2019)

Customizable Embedded Real-Time Systems: Challenges and Key Techniques

Read More