Explore the words cloud of the topDFT project. It provides you a very rough idea of what is the project "topDFT" about.
The following table provides information about the project.
Coordinator |
THE UNIVERSITY OF NOTTINGHAM
Organization address contact info |
Coordinator Country | United Kingdom [UK] |
Total cost | 1˙998˙649 € |
EC max contribution | 1˙998˙649 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2017-COG |
Funding Scheme | ERC-COG |
Starting year | 2018 |
Duration (year-month-day) | from 2018-05-01 to 2023-04-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | THE UNIVERSITY OF NOTTINGHAM | UK (NOTTINGHAM) | coordinator | 1˙998˙649.00 |
Density-functional theory (DFT) is the most widely used method to study the electronic structure of complex molecules, solids, and materials. Its use across chemistry, solid-state physics and materials science is a testament to its black-box nature and low cost. However, many important areas remain inaccessible to DFT simulations, including applications to strongly correlated materials and systems in electromagnetic fields. The topDFT project will deliver new conceptual approaches to design the next generation of density-functional methods. This will be achieved by pursuing three parallel strategies: i) Developing new strategies for the design of functionals ii) Implementing topological DFT, a new computational framework iii) Developing extended density-functional theories.
A new approach to the exchange–correlation problem, based on a perspective from the kinetic energy of the electrons, will be developed – leading to new practical density-functional approximations (DFAs). A new framework for computation will be developed by combining techniques from topological electronic structure methods with DFT, allowing for the identification of correlation ‘hotspots’. This idea is chemically intuitive; electrons close together interact in a fundamentally different way to those far apart. Recognising these hotspots, and adapting dynamically to them, will lead to new DFAs with substantially greater accuracy.
Extended-DFTs will open the way to study strongly correlated systems (e.g. high-Tc superconductors, transition metal oxides, Mott insulators) of importance in chemistry and materials science and magnetic systems (e.g. molecular magnets, spin glasses, spin frustrated systems) of importance in nano-science, advanced materials and spintronics applications. The topDFT project will have wide impact on areas including chemical synthesis, materials design and nano-science that underpin key areas such as manufacturing and medicine of benefit to all sections of society.
year | authors and title | journal | last update |
---|---|---|---|
2019 |
Christof Holzer, Andrew M. Teale, Florian Hampe, Stella Stopkowicz, Trygve Helgaker, Wim Klopper GW quasiparticle energies of atoms in strong magnetic fields published pages: 214112, ISSN: 0021-9606, DOI: 10.1063/1.5093396 |
The Journal of Chemical Physics 150/21 | 2020-01-28 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TOPDFT" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "TOPDFT" are provided by the European Opendata Portal: CORDIS opendata.
HighlY performing proton exchange membrane water electrolysers with reinforceD membRanes fOr efficient hydrogen GENeration
Read More