Opendata, web and dolomites

mPP SIGNED

machine learning for Particle Physics

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 mPP project word cloud

Explore the words cloud of the mPP project. It provides you a very rough idea of what is the project "mPP" about.

hardware    offers    learning    detector    proposes    successfully    scientific    ahead    intermediate    quest    techniques    local    modern    identification    progresses    decade    occurrence    monitoring    experiments    reconstruction    systematic    machine    cern    computing    image    breakthrough    opened    inspecting    final    toward    caused    components    revolutionize    dl    benefit    ml    technological    operate    mining    representing    energy    experts    automatizing    functioning    recognition    impasse    event    technologies    physics    models    searches    anomaly    data    datasets    anomalous    human    deep    collaborations    packages    cutting    unspecified    of    detectors    goodness    carry    correct    financial    create    paving    hep    indexing    generating    budgets    team    software    reinforced    visually    solution    flat    outliers    hosted    complexity    events    scientists    generative    unsupervised    structure    self    companies    detection    consequently    computer    private    infrastructures    experimental    edge   

Project "mPP" data sheet

The following table provides information about the project.

Coordinator
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH 

Organization address
address: ESPLANADE DES PARTICULES 1 PARCELLE 11482 DE MEYRIN BATIMENT CADASTRAL 1046
city: GENEVA 23
postcode: 1211
website: www.cern.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 1˙703˙750 €
 EC max contribution 1˙703˙750 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-COG
 Funding Scheme ERC-COG
 Starting year 2018
 Duration (year-month-day) from 2018-04-01   to  2023-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CH (GENEVA 23) coordinator 1˙703˙750.00

Map

 Project objective

This project proposes to use modern Machine Learning (ML), particularly Deep Learning (DL), as a breakthrough solution to address the scientific, technological, and financial challenges that High Energy Physics (HEP) will face in the decade ahead. The quest for new physics is increasing the complexity of the experiments and, consequently, the human and financial costs to operate these detectors, with experiments facing at best flat budgets. ML offers a way out of this impasse. With the development of DL, ML has successfully addressed tasks such as image recognition and text understanding, which eventually opened the way to automatizing complex tasks. These progresses have the potential to revolutionize HEP experimental techniques. We propose to apply cutting-edge ML technologies to HEP problems, paving the way to self-operating detectors, capable of visually inspecting events and identifying the physics process generating them, while monitoring the goodness of the data, the correct functioning of the detector components and, if any, the occurrence of anomalous events caused by unspecified new physics processes. We structure the work in a set of working packages, representing intermediate steps towards this final goal. We propose to apply ML to data taking, event identification, data-taking monitoring, and event reconstruction as intermediate steps toward using these techniques for unsupervised physics searches. The project resources will by used to create a team of computer scientists, who will carry on a systematic R&D program to apply cutting-edge ML technology to HEP: reinforced learning, generative models, event indexing, data mining, anomaly and outliers detection, etc. Being hosted at CERN, the project will benefit from existing computing infrastructures, large datasets availability, the presence of local experts of each aspect of HEP, and established collaborations with private companies on hardware and software R&D.

 Deliverables

List of deliverables.
Data Management Plan Open Research Data Pilot 2020-01-14 16:56:27

Take a look to the deliverables list in detail:  detailed list of mPP deliverables.

 Publications

year authors and title journal last update
List of publications.
2019 Hashemi, Bobak; Amin, Nick; Datta, Kaustuv; Olivito, Dominick; Pierini, Maurizio
LHC analysis-specific datasets with Generative Adversarial Networks
published pages: , ISSN: , DOI:
1 2019-11-15
2019 Olmo Cerri, Thong Q. Nguyen, Maurizio Pierini, Maria Spiropulu, Jean-Roch Vlimant
Variational autoencoders for new physics mining at the Large Hadron Collider
published pages: , ISSN: 1029-8479, DOI: 10.1007/JHEP05(2019)036
Journal of High Energy Physics 2019/5 2019-10-15
2019 J. Arjona Martínez, O. Cerri, M. Spiropulu, J. R. Vlimant, M. Pierini
Pileup mitigation at the Large Hadron Collider with graph neural networks
published pages: , ISSN: 2190-5444, DOI: 10.1140/epjp/i2019-12710-3
The European Physical Journal Plus 134/7 2019-10-15
2019 Javier Duarte, Philip Harris, Scott Hauck, Burt Holzman, Shih-Chieh Hsu, Sergo Jindariani, Suffian Kha, Benjamin Krei, Brian Le, Mia Liu, Vladimir Lončar, Jennifer Ngadiuba, Kevin Pedro, Brandon Perez, Maurizio Pierini, Dylan Rankin, Nhan Tran, Matthew Trahms, Aristeidis Tsaris, Colin Versteeg, Ted W. Way, Dustin Werran, Zhenbin Wu
FPGA-accelerated machine learning inference as a service for particle physics computing
published pages: , ISSN: 2510-2036, DOI:
Computing and Software for Big Science 2019-10-15
2019 Adrian Alan Pol, Gianluca Cerminara, Cecile Germain, Maurizio Pierini, Agrima Seth
Detector Monitoring with Artificial Neural Networks at the CMS Experiment at the CERN Large Hadron Collider
published pages: , ISSN: 2510-2036, DOI: 10.1007/s41781-018-0020-1
Computing and Software for Big Science 3/1 2019-10-15
2019 Shah Rukh Qasim, Jan Kieseler, Yutaro Iiyama, Maurizio Pierini
Learning representations of irregular particle-detector geometry with distance-weighted graph networks
published pages: , ISSN: 1434-6044, DOI: 10.1140/epjc/s10052-019-7113-9
The European Physical Journal C 79/7 2019-10-15
2018 J. Duarte, S. Han, P. Harris, S. Jindariani, E. Kreinar, B. Kreis, J. Ngadiuba, M. Pierini, R. Rivera, N. Tran, Z. Wu
Fast inference of deep neural networks in FPGAs for particle physics
published pages: P07027-P07027, ISSN: 1748-0221, DOI: 10.1088/1748-0221/13/07/P07027
Journal of Instrumentation 13/07 2019-10-15
2019 T. Q. Nguyen, D. Weitekamp, D. Anderson, R. Castello, O. Cerri, M. Pierini, M. Spiropulu, J-R. Vlimant
Topology Classification with Deep Learning to Improve Real-Time Event Selection at the LHC
published pages: , ISSN: 2510-2036, DOI: 10.1007/s41781-019-0028-1
Computing and Software for Big Science 3/1 2019-10-15

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MPP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MPP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

TransTempoFold (2019)

A need for speed: mechanisms to coordinate protein synthesis and folding in metazoans

Read More  

MITOvTOXO (2020)

Understanding how mitochondria compete with Toxoplasma for nutrients to defend the host cell

Read More  

FatVirtualBiopsy (2020)

MRI toolkit for in vivo fat virtual biopsy

Read More