Explore the words cloud of the UB-RASDisease project. It provides you a very rough idea of what is the project "UB-RASDisease" about.
The following table provides information about the project.
Coordinator |
VIB VZW
Organization address contact info |
Coordinator Country | Belgium [BE] |
Total cost | 1˙999˙796 € |
EC max contribution | 1˙999˙796 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2017-COG |
Funding Scheme | ERC-COG |
Starting year | 2018 |
Duration (year-month-day) | from 2018-04-01 to 2023-03-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | VIB VZW | BE (ZWIJNAARDE - GENT) | coordinator | 1˙999˙796.00 |
The RAS pathway is the most frequently activated signaling node in human disease. Despite intensive efforts, effective therapeutic strategies for RAS-driven disease remain daunting. Elucidation of the mechanisms of RAS activation promises to lead toward novel therapeutic approaches to inhibit RAS activity, and may permit identification of patients who might benefit from RAS pathway inhibitors. Our preliminary studies show that reversible ubiquitylation controls RAS activity by altering its interaction network, thus representing a conceptually novel mechanism of RAS regulation. Our initial steps towards the understanding of the RAS ubiquitylation machinery have shown that positive regulators of RAS ubiquitylation are frequently mutated or down-regulated in RAS-driven diseases, whereas negative regulators are commonly up-regulated. These striking initial results suggest that dysregulation of RAS ubiquitylation may be an alternative mechanism that drives RAS activation in human disease. Here, we aim to elucidate the role of the ubiquitin system in RAS-driven disease. We will unravel the molecular machinery controlling RAS ubiquitylation and ascertain alterations of the identified machinery in RAS-driven disease. To assess the functional impact of these alterations, we will create genetically modified mouse models and CRISPR-engineered human cell models. We will employ cutting-edge proteomic approaches to determine how disease-associated dysregulation of RAS ubiquitylation perturbs RAS interactions and signalling. Using a synthetic biologic approach, we will obtain insights into mechanisms by which ubiquitylation modulates RAS interactions. It is significant that, in contrast to the majority of known RAS regulators, the ubiquitin enzymes are “druggable”, which implicates them as promising targets for inhibiting RAS activity. Thus, our studies could lead to new ways of defeating RAS-driven disease.
year | authors and title | journal | last update |
---|---|---|---|
2018 |
M. Steklov, S. Pandolfi, M. F. Baietti, A. Batiuk, P. Carai, P. Najm, M. Zhang, H. Jang, F. Renzi, Y. Cai, L. Abbasi Asbagh, T. Pastor, M. De Troyer, M. Simicek, E. Radaelli, H. Brems, E. Legius, J. Tavernier, K. Gevaert, F. Impens, L. Messiaen, R. Nussinov, S. Heymans, S. Eyckerman, A. A. Sablina Mutations in LZTR1 drive human disease by dysregulating RAS ubiquitination published pages: 1177-1182, ISSN: 0036-8075, DOI: 10.1126/science.aap7607 |
Science 362/6419 | 2019-12-16 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "UB-RASDISEASE" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "UB-RASDISEASE" are provided by the European Opendata Portal: CORDIS opendata.
Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.
Read MoreDiscovering a novel allergen immunotherapy in house dust mite allergy tolerance research
Read MoreConstraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks
Read More