Opendata, web and dolomites

TUBEURB SIGNED

Tunnelling beneath piled structures in urban areas

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 TUBEURB project word cloud

Explore the words cloud of the TUBEURB project. It provides you a very rough idea of what is the project "TUBEURB" about.

tunnel    world    leader    nonlinear    finite    skills    deformations    risks    beneath    compensation    raft    model    gravity    specialised    effect    academic    particle    theory    simplified    engineering    pile    buildings    stress    mentoring    industrial    urban    capability    prof    tunnels    jimenez    full    validation    formulation    movements    experimental    stage    maximise    minimize    tunnelling    theoretical    analytical    benefits    infrastructure    mechanisms    services    guide    foundations    tests    structural    variations    numerical    computational    installation    structure    pfem    skilled    capacity    piled    researcher    domain    combines    soil    teaching    entire    tackles    acquire    cavity    variety    load    bridges    accurately    guarantee    transfer    caused    damage    reductions    team    outcomes    models    solutions    online    grouting    fellow    cimne    sectors    construction    data    society    sustainable    interaction    educational    simulation    optimize   

Project "TUBEURB" data sheet

The following table provides information about the project.

Coordinator
UNIVERSIDAD POLITECNICA DE MADRID 

Organization address
address: CALLE RAMIRO DE MAEZTU 7 EDIFICIO RECTORADO
city: MADRID
postcode: 28040
website: www.upm.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 158˙121 €
 EC max contribution 158˙121 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-10-01   to  2020-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSIDAD POLITECNICA DE MADRID ES (MADRID) coordinator 158˙121.00

Map

 Project objective

In urban areas, tunnels for infrastructure and services are increasingly important. The project aims to develop numerical solutions of tunnelling beneath buildings and bridges supported by pile and piled raft foundations, focusing on structural deformations and reductions of pile capacity. The effect of compensation grouting is also addressed to optimize its design and minimize its risks. Two novel simulation approaches are proposed to account for both stress variations and movements within the soil caused by pile installation, tunnelling and grouting: 1) a simplified formulation, with low computational costs, that combines analytical two-stage analysis methods with cavity theory and nonlinear pile-soil load transfer mechanisms; 2) the Particle Finite Element Method (PFEM) model to accurately model the entire soil-structure domain. An online damage assessment system is proposed to facilitate the implementation of outcomes in the construction and educational sectors. Prof Jimenez, highly skilled in numerical and analytical methods for tunnelling engineering, will guide the fellow to the delivery of the simplified solutions. The CIMNE research team, world-leader in development of PFEM, will lead the researcher to implement the advanced numerical models. Partner organisations will provide experimental data from high-gravity tests and field measurements for validation; in particular, the industrial partner will guarantee that this research tackles real-world engineering. The experienced researcher, specialised in two-stage solutions and experimental testing of tunnel-structure interaction, will acquire new computational and theoretical skills in a wide variety of approaches while enhancing his mentoring and teaching capability. The end-users will have full access to results and developed models; this will maximise academic impact and it will help the construction sector to deliver more cost-effective and sustainable tunnelling projects, with benefits for the society.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TUBEURB" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TUBEURB" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

INFANTPATTERNS (2019)

Development of kinematic and muscle patterns in preterm infants

Read More  

UNMACRODYN (2019)

Uncertainty shocks, inflation dynamics and monetary policy

Read More