Opendata, web and dolomites

VEILA SIGNED

Identifying the source of unknown volcanic eruptions in Late Antiquity

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 VEILA project word cloud

Explore the words cloud of the VEILA project. It provides you a very rough idea of what is the project "VEILA" about.

archives    eruptions    sulphate    characterising    forcing    1300    micrometric    interface    inform    occurred    unknown    tephrochronologists    impacts    political    veils    lake    stratospheric    trapped    societal    6th    coincides    aerosols    reorganisations    antarctic    source    atmosphere    arctic    sources    1850    volcanic    cooler    human    equatorial    played    climatic    extract    global    episode    upheavals    demise    potentially    particles    migrations    cores    deposition    notably    little    correlating    history    dendrochronology    clustering    shorter    climatology    geochemical    cooling    ash    eurasian    sediment    antique    caused    correlations    tephrochronology    outputs    methodological    ashes    climate    series    locate    left    era    ce    fingerprints    polar    ice    shaped    circa    lalia    7th    dispersal    interdisciplinary    regional    680    530    latter    trajectory    samples    centennial    volcanism    sulphur    travelled    contributed    suspected    lia    temporal    glaciology    horizons    age    century    empires    implicated    eurasia    period   

Project "VEILA" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2021-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 183˙454.00

Map

 Project objective

Volcanism has shaped the human trajectory as a result of the regional impacts of ash deposition and through global climate change caused by stratospheric veils of volcanic sulphate aerosols. Volcanic forcing of climate is suspected to be implicated in centennial scale climatic cooling during the Common Era, notably in triggering the Little Ice Age (LIA, circa 1300-1850 CE), and the shorter but cooler Late Antique Little Ice Age (LALIA, circa 530-680 CE). The latter episode would have contributed to major societal reorganisations that occurred across Eurasia, including the rise and demise of empires, migrations and political upheavals. The LALIA coincides with a series of large volcanic eruptions of unknown source, only identified by sulphur-rich horizons in polar ice cores, left by aerosols trapped in the ice after dispersal through the high atmosphere. This project aims to locate the volcanic sources of these unknown 6th and 7th century eruptions, by characterising and correlating their geochemical fingerprints in global archives, including Antarctic and Arctic ice cores and equatorial lake sediment cores. An interdisciplinary approach at the interface of glaciology, tephrochronology, dendrochronology, and climatology will be used to extract and analyse micrometric particles of far-travelled ashes and to identify correlations between different the samples and potentially to identify the source. The results of the proposed research will provide methodological advances of wider interest to tephrochronologists, and will facilitate modelling of the climate impacts of these eruptions. The outputs will provide a better understanding of the role of volcanism in centennial scale climate cooling during the Common Era, and inform the extent to which volcanism and associated climate forcing played a role in Eurasian history in the Late Antique period. They will also be relevant to understanding the potential impacts of future temporal clustering of climate-forcing eruptions.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "VEILA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "VEILA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CoCoNat (2019)

Coordination in constrained and natural distributed systems

Read More  

eXcape3D (2019)

Functional dissection of X-linked regulatory DNA: unravelling the impact of genome topology on transcriptional regulation

Read More  

EVOMET (2019)

The rise and fall of metastatic clones under immune attack

Read More