Opendata, web and dolomites

VEILA SIGNED

Identifying the source of unknown volcanic eruptions in Late Antiquity

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 VEILA project word cloud

Explore the words cloud of the VEILA project. It provides you a very rough idea of what is the project "VEILA" about.

lia    suspected    ashes    interface    trapped    played    temporal    polar    1850    sulphate    characterising    methodological    demise    unknown    eurasian    human    ash    migrations    1300    forcing    volcanic    age    regional    source    potentially    shorter    left    ce    antarctic    sediment    ice    contributed    equatorial    eurasia    particles    notably    societal    outputs    era    horizons    aerosols    micrometric    tephrochronologists    centennial    cores    eruptions    climatic    climatology    little    climate    atmosphere    implicated    cooling    trajectory    samples    volcanism    stratospheric    6th    extract    political    tephrochronology    inform    sulphur    reorganisations    dendrochronology    archives    deposition    correlating    coincides    veils    interdisciplinary    episode    7th    travelled    circa    history    680    dispersal    fingerprints    latter    caused    530    lake    glaciology    locate    shaped    global    geochemical    lalia    series    period    impacts    arctic    upheavals    occurred    cooler    century    sources    empires    correlations    antique    clustering   

Project "VEILA" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2021-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 183˙454.00

Map

 Project objective

Volcanism has shaped the human trajectory as a result of the regional impacts of ash deposition and through global climate change caused by stratospheric veils of volcanic sulphate aerosols. Volcanic forcing of climate is suspected to be implicated in centennial scale climatic cooling during the Common Era, notably in triggering the Little Ice Age (LIA, circa 1300-1850 CE), and the shorter but cooler Late Antique Little Ice Age (LALIA, circa 530-680 CE). The latter episode would have contributed to major societal reorganisations that occurred across Eurasia, including the rise and demise of empires, migrations and political upheavals. The LALIA coincides with a series of large volcanic eruptions of unknown source, only identified by sulphur-rich horizons in polar ice cores, left by aerosols trapped in the ice after dispersal through the high atmosphere. This project aims to locate the volcanic sources of these unknown 6th and 7th century eruptions, by characterising and correlating their geochemical fingerprints in global archives, including Antarctic and Arctic ice cores and equatorial lake sediment cores. An interdisciplinary approach at the interface of glaciology, tephrochronology, dendrochronology, and climatology will be used to extract and analyse micrometric particles of far-travelled ashes and to identify correlations between different the samples and potentially to identify the source. The results of the proposed research will provide methodological advances of wider interest to tephrochronologists, and will facilitate modelling of the climate impacts of these eruptions. The outputs will provide a better understanding of the role of volcanism in centennial scale climate cooling during the Common Era, and inform the extent to which volcanism and associated climate forcing played a role in Eurasian history in the Late Antique period. They will also be relevant to understanding the potential impacts of future temporal clustering of climate-forcing eruptions.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "VEILA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "VEILA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

HSQG (2020)

Higher Spin Quantum Gravity: Lagrangian Formulations for Higher Spin Gravity and Their Applications

Read More  

ErgThComplexSys (2020)

Ergodic theory for complex systems: a rigorous study of dynamics on heterogeneous networks

Read More