Opendata, web and dolomites

ENVISION SIGNED

Novel mechanisms of early defense against virus infections

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "ENVISION" data sheet

The following table provides information about the project.

Coordinator
AARHUS UNIVERSITET 

Organization address
address: NORDRE RINGGADE 1
city: AARHUS C
postcode: 8000
website: www.au.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 2˙480˙338 €
 EC max contribution 2˙480˙338 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-12-01   to  2023-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    AARHUS UNIVERSITET DK (AARHUS C) coordinator 2˙480˙338.00

Map

 Project objective

Virus-induced type I interferons (IFN) have classically been considered to constitute the first line of defense against virus infections However, recent work by us and others has identified early antiviral actions that occur independently of inducible type I and III IFN expression and sometimes even prior to IFN action (e.g. Iversen,...., Paludan. Nature Immunology, 2016; Paludan. Trends in Immunology, 2016). These discoveries challenge the current thinking in the field that IFNs constitute the first line of defense. Hence, there is an urgent need for more detailed understanding of the immediate antiviral defense mechanisms. Most importantly, we remain to identify key players in IFN-independent antiviral responses, we completely lack insight into the mechanisms that govern these responses, and we also lack information on the importance of this layer of defense in mice and humans. In accord with this, my proposal follows four aims: (i) Identification of mechanisms of virus detection at epithelial surfaces, (ii) elucidation of the role of tonic IFN signaling in antiviral defense, (iii) identification and characterization of novel restriction factors, and (iv) deciphering the mechanisms that govern induction of the first wave of IFNs at epithelial surfaces. In addition, I will also explore the interactions between the early antiviral actions. To achieve the goals, I will combine unbiased genome-wide screens with hypothesis-driven approaches, and will integrate molecular biology/genetics/biochemistry with advanced cell culture systems, animal science and analysis of patient material. Strong preliminary data have been generated for all four aims, and world-leading collaborations are in place, hence minimizing the risks, and allowing fast progress. Our findings will (i) change the thinking in innate immunology by uncovering a novel layer of antiviral defense and (ii) provide new avenues for therapeutic modulation of immune responses.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ENVISION" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ENVISION" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

REPLAY_DMN (2019)

A theory of global memory systems

Read More  

E-DIRECT (2020)

Evolution of Direct Reciprocity in Complex Environments

Read More  

HYDROGEN (2019)

HighlY performing proton exchange membrane water electrolysers with reinforceD membRanes fOr efficient hydrogen GENeration

Read More