Opendata, web and dolomites

2D-SIPC SIGNED

Two-dimensional quantum materials and devices for scalable integrated photonic circuits

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "2D-SIPC" data sheet

The following table provides information about the project.

Coordinator
FUNDACIO INSTITUT DE CIENCIES FOTONIQUES 

Organization address
address: AVINGUDA CARL FRIEDRICH GAUSS 3
city: Castelldefels
postcode: 8860
website: www.icfo.eu

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 2˙976˙812 €
 EC max contribution 2˙976˙812 € (100%)
 Programme 1. H2020-EU.1.2.3. (FET Flagships)
 Code Call H2020-FETFLAG-2018-03
 Funding Scheme RIA
 Starting year 2018
 Duration (year-month-day) from 2018-10-01   to  2021-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FUNDACIO INSTITUT DE CIENCIES FOTONIQUES ES (Castelldefels) coordinator 975˙112.00
2    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) participant 710˙765.00
3    THE UNIVERSITY OF MANCHESTER UK (MANCHESTER) participant 709˙060.00
4    CONSORZIO NAZIONALE INTERUNIVERSITARIO PER LE TELECOMUNICAZIONI IT (PARMA) participant 341˙875.00
5    SINGLE QUANTUM BV NL (DELFT) participant 240˙000.00

Map

 Project objective

The proposed project aims at developing scalable quantum networks, based on photonic chip integration of novel 2D material quantum devices, with the main goal to demonstrate all-optical on-chip quantum processing. The recent demonstration of effortless integration of 2D materials onto photonics and CMOS platforms will result in a breakthrough in the development of on-chip quantum networks. 2D-SIPC will take full advantage of the huge variety of 2D materials and heterostructures and prototype novel quantum devices with revolutionary functionalities. In particular, we will develop electrically driven and entangled single photon emitters, broadband and high temperature single photon detectors, ultra-fast waveguide integrated optical modulators and non-linear gates. To pave the way to scalable networks, 2D-SIPC will develop large scale growth techniques of the most promising 2D materials. With this unique combination of features 2D-SIPC will allow the first demonstration of on-chip optical quantum processing, a key milestone for many quantum network concepts, such as extended secure quantum communication, scaling up of quantum computers and simulators, and novel quantum sensing applications with entangled photons. In particular, as these topics cover all four Quantum Technology pillars of the Quantum Flagship, our proposal makes a strong strategic link to each one of them. Beyond the 2D-SIPC platform, each developed component will be exploited in such distant fields as biological and medical imaging, radio-astronomy and environmental monitoring. The 2D-SIPC consortium includes four academic and one industrial partner with a high degree of complementarity that are at the forefronts of their fields, including single photon detection (ICFO), theory and fabrication of 2D materials and their heterostructures (UNIMAN), single photon emission (UCAM), chip based photonic circuits (CNIT) and commercial single photon detection, single photon emission and packaging (SQ).

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "2D-SIPC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "2D-SIPC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.2.3.)

FLAG-ERA III (2018)

The Flagship ERA-NET — FLAG-ERA III

Read More  

SQUARE (2018)

Scalable Rare Earth Ion Quantum Computing Nodes

Read More  

QFlag (2019)

Quantum Technology Flagship Coordination and Support Action

Read More