Opendata, web and dolomites

LaGaTYb SIGNED

Exploring lattice gauge theories with fermionic Ytterbium atoms

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 LaGaTYb project word cloud

Explore the words cloud of the LaGaTYb project. It provides you a very rough idea of what is the project "LaGaTYb" about.

doped    setups    background    establishes    temperature    time    direction    nuclear    platform    connection    proven    physics    dynamics    theories    motivates    revitalized    roadmap    atom    traps    remarkable    engineered    interpreted    search    locally    feynmans    difficult    atoms    scalability    monte    mott    computing    despite    sites    spin    suffer    phenomena    gauge    experimental    numerical    generate    lattices    quantum    limitations    regarding    class    progress    paradigmatic    ranging    sign    energy    precise    alternative    couplings    physical    instance    interacting    superconductors    simulation    model    alkaline    simulating    insulators    simulations    models    degrees    naturally    provides    condensed    cold    seemingly    link    mechanical    freedom    tunnel    abelian    ultracold    electrodynamics    fermionic    radically    powerful    lattice    carlo    broad    ion    static    severe    local    idea    optical    topological    perturbative    earth    intriguing    exhibits    regime    imposes    combines   

Project "LaGaTYb" data sheet

The following table provides information about the project.

Coordinator
LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN 

Organization address
address: GESCHWISTER SCHOLL PLATZ 1
city: MUENCHEN
postcode: 80539
website: www.uni-muenchen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙498˙980 €
 EC max contribution 1˙498˙980 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2024-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN DE (MUENCHEN) coordinator 1˙498˙980.00

Map

 Project objective

Gauge theories establish a connection between seemingly different physical areas, ranging from high-energy to condensed matter physics and topological quantum computing. Very often gauge theories are difficult to study theoretically in particular in the strongly-interacting regime, where perturbative methods are not reliable. Despite the remarkable progress offered by numerical methods, such as classical Monte Carlo simulations, the sign problem imposes severe limitations, for instance, regarding real-time dynamics. This motivates the search for alternative approaches. Recent progress in the control of engineered quantum systems has revitalized Feynmans's idea of quantum simulation, which naturally does not suffer from the sign problem because its working principle is quantum mechanical. Ultracold atoms in optical lattices have proven powerful in studying important condensed matter models and intriguing results have been achieved in simulating static background gauge fields. This establishes a link to more general gauge theories, yet these are out-of-reach due to complex requirements e.g. regarding the implementation of gauge and matter field degrees of freedom. Achieving significant progress in this direction requires a radically new approach. I propose to develop a novel experimental platform that combines two unique features: precise local control as typical for ion traps and scalability of cold-atom setups to generate advanced optical lattices with locally controllable tunnel couplings. It will facilitate the implementation of a broad class of gauge theories, so-called quantum link models, with fermionic atoms, where matter and gauge fields are interpreted as different lattice sites. The proposed model exhibits paradigmatic phenomena of quantum electrodynamics and doped Mott insulators in connection to high temperature superconductors and provides a roadmap to study more complex non-Abelian models based on the nuclear spin states of Alkaline-earth-like atoms.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LAGATYB" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LAGATYB" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More