Opendata, web and dolomites

LaGaTYb SIGNED

Exploring lattice gauge theories with fermionic Ytterbium atoms

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 LaGaTYb project word cloud

Explore the words cloud of the LaGaTYb project. It provides you a very rough idea of what is the project "LaGaTYb" about.

background    establishes    ranging    roadmap    time    alternative    search    numerical    electrodynamics    locally    earth    direction    idea    traps    ion    combines    exhibits    topological    computing    tunnel    temperature    mechanical    interpreted    doped    physical    regime    broad    atom    paradigmatic    platform    spin    engineered    provides    condensed    cold    interacting    feynmans    models    mott    atoms    quantum    energy    static    scalability    sign    lattices    couplings    carlo    gauge    progress    freedom    lattice    radically    physics    revitalized    local    motivates    theories    link    insulators    powerful    regarding    abelian    severe    suffer    simulating    superconductors    intriguing    remarkable    naturally    limitations    difficult    optical    sites    instance    dynamics    despite    setups    class    monte    experimental    proven    connection    precise    ultracold    model    alkaline    perturbative    fermionic    nuclear    simulations    generate    phenomena    degrees    seemingly    simulation    imposes   

Project "LaGaTYb" data sheet

The following table provides information about the project.

Coordinator
LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN 

Organization address
address: GESCHWISTER SCHOLL PLATZ 1
city: MUENCHEN
postcode: 80539
website: www.uni-muenchen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙498˙980 €
 EC max contribution 1˙498˙980 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2024-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN DE (MUENCHEN) coordinator 1˙498˙980.00

Map

 Project objective

Gauge theories establish a connection between seemingly different physical areas, ranging from high-energy to condensed matter physics and topological quantum computing. Very often gauge theories are difficult to study theoretically in particular in the strongly-interacting regime, where perturbative methods are not reliable. Despite the remarkable progress offered by numerical methods, such as classical Monte Carlo simulations, the sign problem imposes severe limitations, for instance, regarding real-time dynamics. This motivates the search for alternative approaches. Recent progress in the control of engineered quantum systems has revitalized Feynmans's idea of quantum simulation, which naturally does not suffer from the sign problem because its working principle is quantum mechanical. Ultracold atoms in optical lattices have proven powerful in studying important condensed matter models and intriguing results have been achieved in simulating static background gauge fields. This establishes a link to more general gauge theories, yet these are out-of-reach due to complex requirements e.g. regarding the implementation of gauge and matter field degrees of freedom. Achieving significant progress in this direction requires a radically new approach. I propose to develop a novel experimental platform that combines two unique features: precise local control as typical for ion traps and scalability of cold-atom setups to generate advanced optical lattices with locally controllable tunnel couplings. It will facilitate the implementation of a broad class of gauge theories, so-called quantum link models, with fermionic atoms, where matter and gauge fields are interpreted as different lattice sites. The proposed model exhibits paradigmatic phenomena of quantum electrodynamics and doped Mott insulators in connection to high temperature superconductors and provides a roadmap to study more complex non-Abelian models based on the nuclear spin states of Alkaline-earth-like atoms.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LAGATYB" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LAGATYB" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More  

CUSTOMER (2019)

Customizable Embedded Real-Time Systems: Challenges and Key Techniques

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More