Opendata, web and dolomites

REALNANO SIGNED

3D Structure of Nanomaterials under Realistic Conditions

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "REALNANO" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITEIT ANTWERPEN 

Organization address
address: PRINSSTRAAT 13
city: ANTWERPEN
postcode: 2000
website: www.ua.ac.be

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Total cost 2˙000˙000 €
 EC max contribution 2˙000˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-05-01   to  2024-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITEIT ANTWERPEN BE (ANTWERPEN) coordinator 2˙000˙000.00

Map

 Project objective

The properties of nanomaterials are essentially determined by their 3D structure. Electron tomography enables one to measure the morphology and composition of nanostructures in 3D, even at atomic resolution. Unfortunately, all these measurements are performed at room temperature and in ultra-high vacuum, which are conditions that are completely irrelevant for the use of nanoparticles in real applications! Moreover, nanoparticles often have ligands at their surface, which form the interface to the environment. These ligands are mostly neglected in imaging, although they strongly influence the growth, thermal stability and drive self-assembly.

I will develop innovative and quantitative 3D characterisation tools, compatible with the fast changes of nanomaterials that occur in a realistic thermal and gaseous environment. To visualise surface ligands, I will combine direct electron detection with novel exit wave reconstruction techniques.

Tracking the 3D structure of nanomaterials in a relevant environment is extremely challenging and ambitious. However, our preliminary experiments demonstrate the enormous impact. We will be able to perform a dynamic characterisation of shape changes of nanoparticles. This is important to improve thermal stability during drug delivery, sensing, data storage or hyperthermic cancer treatment. We will provide quantitative 3D measurements of the coordination numbers of the surface atoms of catalytic nanoparticles and follow the motion of individual atoms live during catalysis. By visualising surface ligands, we will understand their fundamental influence on particle shape and during self-assembly.

This program will be the start of a completely new research line in the field of 3D imaging at the atomic scale. The outcome will certainly boost the design and performance of nanomaterials. This is not only of importance at a fundamental level, but is a prerequisite for the incorporation of nanomaterials in our future technology.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "REALNANO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "REALNANO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

FatVirtualBiopsy (2020)

MRI toolkit for in vivo fat virtual biopsy

Read More  

TechChild (2019)

Just because we can, should we? An anthropological perspective on the initiation of technology dependence to sustain a child’s life

Read More  

TransTempoFold (2019)

A need for speed: mechanisms to coordinate protein synthesis and folding in metazoans

Read More