Opendata, web and dolomites

HydraMechanics SIGNED

Mechanical Aspects of Hydra Morphogenesis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "HydraMechanics" data sheet

The following table provides information about the project.

Coordinator
TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY 

Organization address
address: SENATE BUILDING TECHNION CITY
city: HAIFA
postcode: 32000
website: www.technion.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 2˙000˙000 €
 EC max contribution 2˙000˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2024-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY IL (HAIFA) coordinator 2˙000˙000.00

Map

 Project objective

Morphogenesis is one of the most remarkable examples of biological pattern formation. Despite substantial progress in the field, we still do not understand the organizational principles responsible for the robust convergence of the morphogenesis process, across scales, to form viable organisms under variable conditions. We focus here on the less-studied mechanical aspects of this problem, and aim to uncover how mechanical forces and feedback contribute to the formation and stabilization of the body plan. Regenerating Hydra offer a powerful platform to explore this direction, thanks to their simple body plan, extraordinary regeneration capabilities, and the accessibility and flexibility of their tissues. We propose to follow the regeneration of excised tissue segments, which inherit an aligned supra-cellular cytoskeletal organization from the parent Hydra, as well as cell aggregates, which lack any prior organization. We will employ advanced microscopy techniques and develop elaborate image analysis tools to track cytoskeletal organization and collective cell migration and correlate them with global tissue morphology, from the onset of regeneration all the way to the formation of complete animals. Furthermore, to directly probe the influence of mechanics on Hydra morphogenesis, we propose to apply various mechanical perturbations, and intervene with the axis formation process using external forces and mechanical constraints. Overall, the proposed work seeks to develop an effective phenomenological description of morphogenesis during Hydra regeneration, at the level of cells and tissues, and reveal the mechanical basis of this process. More generally, our research will shed light on the role of mechanics in animal morphogenesis, and inspire new approaches for using external forces to direct tissue engineering and advance regenerative medicine.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HYDRAMECHANICS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HYDRAMECHANICS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

FatVirtualBiopsy (2020)

MRI toolkit for in vivo fat virtual biopsy

Read More  

TechChild (2019)

Just because we can, should we? An anthropological perspective on the initiation of technology dependence to sustain a child’s life

Read More  

MITOvTOXO (2020)

Understanding how mitochondria compete with Toxoplasma for nutrients to defend the host cell

Read More