Explore the words cloud of the F4TGLUT project. It provides you a very rough idea of what is the project "F4TGLUT" about.
The following table provides information about the project.
Coordinator |
GOETEBORGS UNIVERSITET
Organization address contact info |
Coordinator Country | Sweden [SE] |
Total cost | 191˙852 € |
EC max contribution | 191˙852 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2018 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2019 |
Duration (year-month-day) | from 2019-05-01 to 2021-04-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | GOETEBORGS UNIVERSITET | SE (GOETEBORG) | coordinator | 191˙852.00 |
Glutamate is the primary activating neurotransmitter in the brain. It modulates synaptic plasticity of neurons, which underlies memory formation. However, it also plays a fundamental role in pathological processes, such as those related to Alzheimer’s disease. This essential role and future development of therapeutic agents urge the development of a highly-sensitive analytical method for determining glutamate levels at a cellular level. In this project I will create a miniaturized, in vitro system that will allow this. To develop it, my expertise in microfluidics and pharmacy will be supplemented by the host’s extensive experience with cell analysis and nanoelectrodes.
When glutamate-type neurons in the brain are innervated, glutamate release into the synapse between adjacent neurons occurs. This triggers chemical signal transmission. Nanoelectrodes are uniquely equipped to monitor this neurotransmitter release with unprecedented spatiotemporal resolution. The combination with microfluidics will allow control of fluids and experiments at the nanoliter scale. Furthermore, through precisely fabricated microstructures, guidance of cell growth and precise placement of the nanoelectrodes in the device will be achieved.
Glutamate modulates synaptic plasticity, a phenomenon understood to underlie memory formation. Furthermore, dietary compounds and drugs can influence glutamate neurotransmission. The proposed system enables selective exposure of individual neurons cultured in the microfluidic device to such compounds. Using the integrated nanoelectrodes, direct monitoring of their effects on chemical signaling between cells will be possible. The results will significantly contribute to our understanding of glutamate neurotransmission, and how drugs and diet can influence it. Additionally, the system combines cell culture, selective exposure and analyses at the cellular level using sensors and imaging, making it an ideal platform for future drug development research.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "F4TGLUT" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "F4TGLUT" are provided by the European Opendata Portal: CORDIS opendata.
Architecture and regulation of PI3KC2β lipid kinase complex for nutrient signaling at the lysosome
Read More