Opendata, web and dolomites

CATALYSTNH3SYNTHESIS SIGNED

Synthetically Tuned Atomic Ordering and Electronic Properties of Nano-Intermetallic Compounds for the Ammonia Synthesis.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CATALYSTNH3SYNTHESIS project word cloud

Explore the words cloud of the CATALYSTNH3SYNTHESIS project. It provides you a very rough idea of what is the project "CATALYSTNH3SYNTHESIS" about.

commercialization    appropriate    unsaturated    electronic    appear    exist    supporting    geometrically    alloys    totally    catalysts    shape    catalytic    few    electric    thereby    compound    situ    topological    chemical    carbon    century    displayed    alkynes    stipulates    alternative    nh3    nano    excellent    explore    semi    superconductivity    tuned    n2    co2    competiveness    direction    optimize    activation    fe    found    capability    absence    electronically    hydrogen    imc    hydrogenation    ru    efficiency    storage    costly    geometrical    imcs    considering    operando    structural    catalyst    inert    operated    accompanied    generation    magnetic    co    20th    consuming    ruthenium    structures    metals    techniques    reactions    intermetallic    emerged    discovery    molecule    works    compounds    commercially    memory    regard    energy    look    ammonia    characterization    synthesis    overlooked    potentiality    insulator    exhibit   

Project "CATALYSTNH3SYNTHESIS" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITE CATHOLIQUE DE LOUVAIN 

Organization address
address: PLACE DE L UNIVERSITE 1
city: LOUVAIN LA NEUVE
postcode: 1348
website: www.uclouvain.be

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Total cost 178˙320 €
 EC max contribution 178˙320 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITE CATHOLIQUE DE LOUVAIN BE (LOUVAIN LA NEUVE) coordinator 178˙320.00

Map

 Project objective

Intermetallic compounds (IMCs) exhibit unique structural features accompanied by appropriate changes in the electronic properties. IMCs with their unique magnetic and electric properties have been studied for the superconductivity, shape-memory effects, hydrogen storage capability and for topological insulator applications. However, their catalytic properties have been overlooked so far compared to metals and alloys. These electronically and geometrically tuned structures were found to be excellent catalysts for selected chemical reactions such as semi-hydrogenation of alkynes, hydrogenation of CO and CO2 and unsaturated compounds. Only few works exist on IMCs in the activation of inert molecule N2 but they appear to be promising in this direction. Activation of N2 is a significant step in the synthesis of ammonia (NH3). Even after 100 years of discovery, the same old high-energy consuming Fe based catalytic process is still operated commercially.5 The absence of significant success towards a further development of Fe based catalysts stipulates to look at alternative totally different catalysts. In this regard, Ruthenium(Ru) based catalyst supported on carbon emerged as second-generation catalysts for the ammonia synthesis at the end of 20th century.6 Considering the high cost of Ru for commercialization, further research and development towards the design of less costly catalysts is necessary. In this project, we propose to explore and evaluate nano intermetallic compounds for the activation of N2 molecule, thereby supporting the efficiency and competiveness towards ammonia synthesis. The main objective of the project is to design, optimize and explore the potentiality of novel nano Intermetallic Compound (IMC) supported catalysts for the NH3 synthesis. This project will in particular study the role of electronic and geometrical factors displayed by IMCs in the catalytic process through various characterization techniques including the in situ and operando.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CATALYSTNH3SYNTHESIS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CATALYSTNH3SYNTHESIS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

RAMBEA (2019)

Realistic Assessment of Historical Masonry Bridges under Extreme Environmental Actions

Read More  

PROSPER (2019)

Politics of Rulemaking, Orchestration of Standards, and Private Economic Regulations

Read More  

IRF4 Degradation (2019)

Using a novel protein degradation approach to uncover IRF4-regulated genes in plasma cells

Read More