Opendata, web and dolomites

NoBIAS SIGNED

Artificial Intelligence without Bias

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NoBIAS project word cloud

Explore the words cloud of the NoBIAS project. It provides you a very rough idea of what is the project "NoBIAS" about.

solutions    people    give    everywhere    stages    everyone    leadership    ai    nobias    practical    train    training    artificial    turn    worse    compliance    deployment    reaching    finance    social    learning    algorithms    cohort    intelligence    individuals    decision    optimized    miss    core    disciplinary    news    stage    science    consultancy    employed    understand    considerations    capacity    society    skills    soft    embed    treatment    machine    document    provenance    contravene    industry    arise    transparency    benefiting    variety    human    collected    innovation    decisions    good    software    broadly    automatically    unfairly    15    job    head    bias    fairness    telecommunication    denied    entailing    medical    biases    media    marketing    underperform    acquire    sectors    start    risks    counter    expertise    predictive    performance    treating    move    businesses    government    academia    computer    esrs    chances    impacts    credit    rights    nowadays    interdisciplinary    data    ethical    principles    law    anytime   

Project "NoBIAS" data sheet

The following table provides information about the project.

Coordinator
GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER 

Organization address
address: Welfengarten 1
city: HANNOVER
postcode: 30167
website: www.uni-hannover.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 3˙994˙775 €
 EC max contribution 3˙994˙775 € (100%)
 Programme 1. H2020-EU.1.3.1. (Fostering new skills by means of excellent initial training of researchers)
 Code Call H2020-MSCA-ITN-2019
 Funding Scheme MSCA-ITN-ETN
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER DE (HANNOVER) coordinator 758˙365.00
2    UNIVERSITY OF SOUTHAMPTON UK (SOUTHAMPTON) participant 909˙517.00
3    UNIVERSITA DI PISA IT (PISA) participant 522˙999.00
4    GESIS-LEIBNIZ-INSTITUT FUR SOZIALWISSENSCHAFTEN EV DE (MANNHEIM) participant 505˙576.00
5    ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS EL (THERMI THESSALONIKI) participant 486˙035.00
6    THE OPEN UNIVERSITY UK (MILTON KEYNES) participant 303˙172.00
7    KATHOLIEKE UNIVERSITEIT LEUVEN BE (LEUVEN) participant 256˙320.00
8    SCHUFA HOLDING AG DE (WIESBADEN) participant 252˙788.00

Map

 Project objective

Artificial Intelligence (AI)-based systems are widely employed nowadays to make decisions that have far-reaching impacts on individuals and society. Their decisions might affect everyone, everywhere and anytime entailing risks, such as being denied a credit, a job, a medical treatment, or specific news. Businesses might miss chances, because biases make AI-driven decisions underperform; much worse, they may contravene human rights when treating people unfairly. Bias may arise at all stages of AI-based decision making processes: (i) when data is collected, (ii) when algorithms turn data into decision making capacity, or (iii) when results of decision making are used in applications. Therefore, it is necessary to move beyond traditional AI algorithms optimized for predictive performance and embed ethical and legal principles in the training, design and deployment of AI algorithms to ensure social good while still benefiting from the potential of AI. NoBIAS will develop novel methods for AI-based decision making without bias by taking into account ethical and legal considerations in the design of technical solutions. The core objectives of NoBIAS are to understand legal, social and technical challenges of bias in AI-decision making, to counter them by developing fairness-aware algorithms, to automatically explain AI results, and to document the overall process for data provenance and transparency. We will train a cohort of 15 ESRs (Early-Stage Researchers) to address problems with bias through multi-disciplinary training and research in computer science, data science, machine learning, law and social science. ESRs will acquire practical expertise in a variety of sectors from telecommunication, finance, marketing, media, software, and legal consultancy to broadly foster legal compliance and innovation. Technical, interdisciplinary and soft-skills will give ESRs a head start towards future leadership in industry, academia, or government.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NOBIAS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NOBIAS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.1.)

GREAT (2019)

Grating Reflectors Enabled laser Applications and Training

Read More  

EAGRE (2020)

Eagre/Aegir: high-seas wave-impact modelling

Read More  

DISTINCT (2019)

Dementia: Intersectorial Strategy for Training and Innovation Network for Current Technology (DISTINCT)

Read More