Opendata, web and dolomites

TOX-ANT SIGNED

Toxin-antidote selfish elements in animals: from gene drive to speciation

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 TOX-ANT project word cloud

Explore the words cloud of the TOX-ANT project. It provides you a very rough idea of what is the project "TOX-ANT" about.

action    biology    lack    unknown    bulk    medicine    stimulate    natural    virus    vectors    genomics    discover    questions    mendelian    perpetuated    fish    mosquito    species    screen    anticipated    origin    suggests    genetically    genetics    pha    balancing    multidisciplinary    subverting    molecular    critical    35    view    paternal    global    close    antagonize    surprisingly    first    elegans    effect    predict    malaria    diseases    leveraging    mechanisms    health    gene    class    previously    evo    populations    spread    decade    nematode    synthetic    antidote    efficient    raises    underlying    team    largely    selfish    acting    mechanism    mimicking    biochemistry    prevalence    time    toxin    speciation    diverse    sup    contribution    laws    evolutionary    nematodes    examples    fitness    challenged    dissected    qtl    animal    discovered    ta    devo    segregation    extremely    vertebrates    dissecting    adults    medaka    drive    mapping    dissect    idea    tropicalis    animals    rare    zika    spreading    expertise    burdens    relative   

Project "TOX-ANT" data sheet

The following table provides information about the project.

Coordinator
INSTITUT FUER MOLEKULARE BIOTECHNOLOGIE GMBH 

Organization address
address: DR BOHRGASSE 3
city: WIEN
postcode: 1030
website: www.imba.oeaw.ac.at

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Austria [AT]
 Total cost 1˙498˙428 €
 EC max contribution 1˙498˙428 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2020
 Duration (year-month-day) from 2020-03-01   to  2025-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    INSTITUT FUER MOLEKULARE BIOTECHNOLOGIE GMBH AT (WIEN) coordinator 1˙498˙428.00

Map

 Project objective

Toxin-antidote (TA) elements are a class of selfish elements that spread in natural populations by subverting the laws of Mendelian segregation (gene drive activity). For a decade, the only known TA element in animals was a paternal-acting element discovered in the nematode C. elegans. The lack of other examples perpetuated the idea that TA elements were extremely rare in animals. However, I recently challenged this view with two key findings 1) I genetically dissected a second TA element in C. elegans, the element sup-35/pha-1, and 2) I identified five novel TA elements in C. tropicalis, a close relative of C. elegans. Surprisingly, some of these novel TA elements can affect the fitness of adults and can antagonize each other mimicking the effect of balancing selection. Overall, my research strongly suggests that TA elements are much more common in animals than previously anticipated and raises critical questions about their origin, prevalence, mechanism of action, and contribution to speciation, all of which are largely unknown. This proposal has three main objectives: 1. To dissect the molecular mechanisms underlying an animal TA element for the first time. 2. To identify and characterize novel TA elements in diverse nematode species. 3. To screen for TA elements in medaka fish. My team and I will achieve these objectives by leveraging my multidisciplinary expertise in genomics, evo-devo, and biochemistry, as well as a state-of-the-art bulk QTL mapping method that I recently developed. Dissecting the molecular mechanisms used by natural selfish elements will help us design more efficient and specific synthetic drive elements that could target mosquito vectors spreading diseases such as malaria and Zika virus - global health burdens. I predict that we will discover and characterize many novel TA selfish elements in diverse species from nematodes to vertebrates. Our findings will stimulate new research areas in genetics, evolutionary biology, and medicine.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TOX-ANT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TOX-ANT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More  

RODRESET (2019)

Development of novel optogenetic approaches for improving vision in macular degeneration

Read More