Explore the words cloud of the Ph.D. project. It provides you a very rough idea of what is the project "Ph.D." about.
The following table provides information about the project.
Coordinator |
BILKENT UNIVERSITESI ULUSAL NANOTEKNOLOJI ARASTIRMA MERKEZI - UNAM
Organization address contact info |
Coordinator Country | Turkey [TR] |
Total cost | 1˙500˙000 € |
EC max contribution | 1˙500˙000 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2019-STG |
Funding Scheme | ERC-STG |
Starting year | 2019 |
Duration (year-month-day) | from 2019-11-01 to 2024-10-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | BILKENT UNIVERSITESI ULUSAL NANOTEKNOLOJI ARASTIRMA MERKEZI - UNAM | TR (ANKARA) | coordinator | 1˙500˙000.00 |
We recently reported the first observation of dynamic adaptive colloidal crystals exhibiting characteristics similar to those commonly associated with living organisms: self-replication, self-healing, adaptation, competition, motility. Here, I propose to do the first experiments to clarify precisely how dynamic adaptive behavior arises far from equilibrium and how to control it. The key to both is a fundamental question at the heart of condensed matter, statistical and nonlinear physics: When far from equilibrium, in the presence of fluctuations and faced with multiple steady states with small energy differences, how does a system evolve? Specifically, my objectives are (1) to form crystals with periodic and aperiodic patterns, e.g. 2D Bravais lattices, quasicrystals, using passive identical particles, (2) to quantify their formation energies through the effective temperature of Brownian particles, (3) to identify the conditions for emergence and control of adaptive behavior. Then, I will draw a complete phase map of these dynamic adaptive colloidal crystals using fitness landscapes to characterize each pattern. I will further ask to what extent this control is extendable down to the few-nm scale, where fluctuations are even stronger and if and how these findings change when using nonidentical, in size or shape, but still passive particles. My system comprises quasi-2D-confined pure-polystyrene 500-nm spheres suspended in water. An energy flux to drive the system far from equilibrium and sustain it there is supplied by an ultrafast laser. My method exploits only three physical tenets, nonlinearity, fluctuations and positive/negative feedback mechanisms acting on identical passive particles, yet generates extremely rich emergent dynamics. A full understanding of how such dynamics arise from so few basic ingredients will advance our understanding of complex systems in addition to numerous practical applications to self-assembly, microfluidics, nanoscience and biology.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PH.D." project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "PH.D." are provided by the European Opendata Portal: CORDIS opendata.