Opendata, web and dolomites

HyperCube SIGNED

HyperCube: Gram scale production of ferrite nanocubes and thermo-responsive polymer coated nanocubes for medical applications and further exploitation in other hyperthermia fields

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "HyperCube" data sheet

The following table provides information about the project.

Coordinator
FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA 

Organization address
address: VIA MOREGO 30
city: GENOVA
postcode: 16163
website: www.iit.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 0 €
 EC max contribution 150˙000 € (0%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-PoC
 Funding Scheme ERC-POC-LS
 Starting year 2020
 Duration (year-month-day) from 2020-07-01   to  2021-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA IT (GENOVA) coordinator 150˙000.00

Map

 Project objective

This project aims at the scale up production, characterization, future commercialization and clinical translation of magnetic iron oxides nanocubes of high magnetic and structural quality and the design and production of an in-flow set up for the further functionalization of the nanocubes with a thermo-responsive (TR) polymer shell. The nanocubes and TR-nanocubes are aimed to be used primarily as heat mediators in magnetic hyperthermia (MH) and as heat-mediated drug agents for the delivery of chemotherapeutic drugs in a heat triggered-mediated chemotherapy for the treatment of tumors. Their use as contrast agents in magnetic resonance imaging (MRI) and magnetic particle imaging (MPI) stands as secondary applications and it will also be relevant in this project. Indeed, given the control over the materials, the scale up synthesis of nanocubes and the in-flow production of TR-nanocubes, we will deliver an unprecedented benchmark scaled product of nanocubes with optimal magneto-heat properties that shall ensure the transition of such materials towards the market and the clinics. In comparison to the standardly used and commercially available magnetic nanoparticles, the high magneto-heat performances at clinically safe magnetic radiofrequency, of such nanocubes will impact the treatment of tumor by MH, by multiple aspects: i) requiring less dose of magnetic materials to be injected intratumorally; ii) unique actuation of dual combination therapy of MH and local heat-triggered drug release, which also will favor a more efficacious therapy at reduced dose of magnetic materials; iii) further degradation and clearance of the heat-mediator nanocubes thus enabling the further investigation of tumour progression by MRI, overcoming the current limitation of iron oxide nanoparticles now employed in MH for the treatment of Glioblastoma Multiforme. Instead, their magnetic response at frequency range of 20-40 kHz will make them appealing as contrast agents in MPI.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HYPERCUBE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HYPERCUBE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

GelGeneCircuit (2020)

Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.

Read More  

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

BECAME (2020)

Bimetallic Catalysis for Diverse Methane Functionalization

Read More