Opendata, web and dolomites

Train2Wind SIGNED

Training school on entrainment in offshore wind power

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "Train2Wind" data sheet

The following table provides information about the project.

Coordinator
DANMARKS TEKNISKE UNIVERSITET 

Organization address
address: ANKER ENGELUNDSVEJ 1 BYGNING 101 A
city: KGS LYNGBY
postcode: 2800
website: www.dtu.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 4˙233˙354 €
 EC max contribution 4˙233˙354 € (100%)
 Programme 1. H2020-EU.1.3.1. (Fostering new skills by means of excellent initial training of researchers)
 Code Call H2020-MSCA-ITN-2019
 Funding Scheme MSCA-ITN-ETN
 Starting year 2020
 Duration (year-month-day) from 2020-02-01   to  2024-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    DANMARKS TEKNISKE UNIVERSITET DK (KGS LYNGBY) coordinator 1˙388˙436.00
2    EBERHARD KARLS UNIVERSITAET TUEBINGEN DE (TUEBINGEN) participant 969˙022.00
3    UNIVERSITETET I BERGEN NO (BERGEN) participant 828˙303.00
4    ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE CH (LAUSANNE) participant 750˙071.00
5    KOBENHAVNS UNIVERSITET DK (KOBENHAVN) participant 297˙522.00

Map

 Project objective

TRAIN2WIND is a PhD TRAINing school analysing enTRAINment in offshore WIND farms with computer models and experiments. By its very nature, a wind turbine extracts energy from the wind, which is replenished from the wind field on the sides and above due to the ambient turbulence. However, offshore the turbulence is lower, and wind farms are typically larger than onshore, therefore the wind can only be replenished from above in a process called entrainment. TRAIN2WIND will investigate the entrainment process using advanced high-resolution computer modelling and wind tunnel models together with measurements of the wind field above, in and downstream of large wind farms, using lidars, radars, satellites and Unmanned Aerial Systems.

Some of the largest operators of offshore wind farms will provide access to the data and the wind farms in order to investigate whether there is a limit to offshore wind power installation density coming from the refreshment of momentum in very large wind farms or clusters. For them, and for the government agencies currently preparing the Marine Spatial Plan for the European waters, updated knowledge of entrainment and the associated potential limits to wind power extraction offshore is paramount to avoid mis-allocation of tens of billions of euros when planning offshore wind farms too dense or too close.

Besides the natural science package, one humanities PhD student will investigate the collaboration between the researchers from a social science and collaboration tools perspective. The project will not only train PhDs, it will also give shorter opportunities to fellows who just want to commit to one year at a time, thus training a total of 20 fellows.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TRAIN2WIND" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TRAIN2WIND" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.1.)

GREAT (2019)

Grating Reflectors Enabled laser Applications and Training

Read More  

SuperCol (2020)

SuperCol: Rational design of super-selective and responsive colloidal particles for biomedical applications

Read More  

REPOL (2020)

CHARACTERIZATION, COMPATIBILIZATION, PROCESSING AND PROPERTIES OF RECYCLED POLYOLEFINS

Read More