Opendata, web and dolomites

PCOMOD SIGNED

Targeting the Plant Cysteine Oxidases to Regulate Plant Stress Tolerance

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "PCOMOD" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙995˙253 €
 EC max contribution 1˙995˙253 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-04-01   to  2025-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 1˙995˙253.00

Map

 Project objective

Population growth and climate change mean that food security is an emerging global challenge. Crop loss due to flood, drought and other weather extremes is something that disproportionately affects the world's poor, but also has widespread international impact. There is an immediate and urgent need to develop tools and strategies to improve crop tolerance to such abiotic stress.

One effective mechanism towards this goal is molecular engineering of crops to withstand prolonged abiotic stress. Group VII Ethylene Response transcription Factors (ERF-VIIs) have a key role in plant stress tolerance, in particular flooding but also salinity, high temperature, drought and oxidative stress. ERF-VIIs are readily degraded, but their stabilisation has led to improved flood tolerance in model plants and crops. Consequently, ERF-VIIs are focal points for engineering abiotic stress resistance in crops.

ERF-VIIs are destabilised when their N-terminal cysteine (Nt-Cys) residues are oxidised, making them substrates for the N-end rule pathway of protein degradation. I discovered that Plant Cysteine Oxidase enzymes (PCOs) catalyse this oxidation, incorporating molecular oxygen into ERF-VII Nt-Cys residues to form Cys-sulfinic acid (CSA), and that PCO activity is sensitive to oxygen availability. These enzymes therefore control ERF-VII stability and mediate the response to flood-induced hypoxia.

I propose generating tools and knowledge to manipulate PCO activity, modulate CSA formation and stabilise ERF-VIIs. This is an attractive and tractable strategy to enhance stress tolerance in plants. The project will require (i) the development of efficient tools and assays to detect and quantify CSA, (ii) an understanding of the breadth of PCO activity for non-ERF-VII substrates, and (iii) an understanding of the role of non-enzymatic CSA formation. This knowledge will enable the development of effective and targeted mechanisms to manipulate PCO activity and improve stress tolerance.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PCOMOD" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PCOMOD" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

TransTempoFold (2019)

A need for speed: mechanisms to coordinate protein synthesis and folding in metazoans

Read More  

TechChild (2019)

Just because we can, should we? An anthropological perspective on the initiation of technology dependence to sustain a child’s life

Read More  

FatVirtualBiopsy (2020)

MRI toolkit for in vivo fat virtual biopsy

Read More